
FmcAdc100m14b4cha Gateware Guide
January 2014 - Release 3.0

For PCIe (SPEC) and VME64x (SVEC) FMC Carriers

Matthieu Cattin (CERN)

i

Table of Contents

Introduction . 1

1 Repositories and Releases . 1
1.1 Software Support . 1

2 About Source Code . 2
2.1 Build from Sources . 2
2.2 Source Code Organisation . 2
2.3 Dependencies . 3

3 Architecture . 4
3.1 SPEC (PCIe carrier) . 4

3.1.1 Clock Domains . 5
3.1.2 GN4124 Core . 6
3.1.3 DMA Embedded Interrupt Controller (EIC) . 6
3.1.4 SPEC Carrier Control and Status Registers . 6

3.2 SVEC (VME64x carrier) . 7
3.2.1 Clock Domains . 9
3.2.2 VME64x Core . 9
3.2.3 SVEC Carrier Control and Status . 9
3.2.4 SVEC Carrier I2C Master . 9

3.3 Common Cores . 10
3.3.1 Carrier 1-wire Master . 10
3.3.2 DDR Memory Controller . 10
3.3.3 Vectored Interrupt Controller (VIC) . 10

3.4 FMC-ADC Core . 12
3.4.1 Sampling clock . 12
3.4.2 Time-tagging Core . 12
3.4.3 FMC-ADC Control and Status Registers . 13
3.4.4 Mezzanine SPI Master . 13
3.4.5 Mezzanine 1-wire Master . 13
3.4.6 Mezzanine I2C Master . 13
3.4.7 Mezzanine System Management I2C Master . 14
3.4.8 FMC-ADC Embedded Interrupt Controller (EIC) . 14

4 Configuration . 15
4.1 Control and Status Registers . 15
4.2 Input Ranges . 16
4.3 Input Offset . 16
4.4 Trigger . 17
4.5 Undersampling . 18

5 Calibration . 19
5.1 Calibration data storage . 19
5.2 Calibration Data Usage . 19

5.2.1 ADC Calibration . 19
5.2.2 DAC Calibration . 20

ii

6 Acquisition . 21
6.1 Single-shot Mode . 22
6.2 Multi-shot Mode . 23

7 Missing Features and Improvements . 25
7.1 To be done before next release . 25
7.2 For a later release . 25

Appendix A . 26
A.1 Calibration Data Storage in EEPROM . 26

Appendix B ADC Core Registers . 28
B.1 Memory map summary . 28
B.2 ctl - Control register . 28
B.3 sta - Status register . 29
B.4 trig_cfg - Trigger configuration . 30
B.5 trig_dly - Trigger delay . 30
B.6 sw_trig - Software trigger . 30
B.7 shots - Number of shots . 31
B.8 trig_pos - Trigger address register . 31
B.9 sr - Sample rate . 31
B.10 pre_samples - Pre-trigger samples . 31
B.11 post_samples - Post-trigger samples . 31
B.12 samples_cnt - Samples counter . 32
B.13 ch1_ctl - Channel 1 control register . 32
B.14 ch1_sta - Channel 1 status register . 32
B.15 ch1_gain - Channel 1 gain calibration register . 32
B.16 ch1_offset - Channel 1 offset calibration register . 33
B.17 ch2_ctl - Channel 2 control register . 33
B.18 ch2_sta - Channel 2 status register . 33
B.19 ch2_gain - Channel 2 gain calibration register . 33
B.20 ch2_offset - Channel 2 offset calibration register . 34
B.21 ch3_ctl - Channel 3 control register . 34
B.22 ch3_sta - Channel 3 status register . 34
B.23 ch3_gain - Channel 3 gain calibration register . 35
B.24 ch3_offset - Channel 3 offset calibration register . 35
B.25 ch4_ctl - Channel 4 control register . 35
B.26 ch4_sta - Channel 4 status register . 35
B.27 ch4_gain - Channel 4 gain calibration register . 36
B.28 ch4_offset - Channel 4 offset calibration register . 36

Appendix C FMC-ADC Embedded Interrupt Controller
Registers . 37

C.1 Memory map summary . 37
C.2 EIC_IDR - Interrupt disable register . 37
C.3 EIC_IER - Interrupt enable register . 37
C.4 EIC_IMR - Interrupt mask register . 37
C.5 EIC_ISR - Interrupt status register . 38

iii

Appendix D DMA Embedded Interrupt Controller Registers
. 39

D.1 Memory map summary . 39
D.2 EIC_IDR - Interrupt disable register . 39
D.3 EIC_IER - Interrupt enable register . 39
D.4 EIC_IMR - Interrupt mask register . 39
D.5 EIC_ISR - Interrupt status register . 40

Appendix E Vectored Interrupt Controller 41
E.1 Memory map summary . 41
E.2 CTL - VIC Control Register . 41
E.3 RISR - Raw Interrupt Status Register . 41
E.4 IER - Interrupt Enable Register . 42
E.5 IDR - Interrupt Disable Register . 42
E.6 IMR - Interrupt Mask Register . 42
E.7 VAR - Vector Address Register . 42
E.8 SWIR - Software Interrupt Register . 42
E.9 EOIR - End Of Interrupt Acknowledge Register . 42

Appendix F Time-tagging Core Registers 44
F.1 Memory map summary . 44
F.2 seconds - Timetag seconds register . 45
F.3 coarse - Timetag coarse time register, system clock ticks (125MHz) 45
F.4 trig_tag_meta - Trigger time-tag metadata register . 45
F.5 trig_tag_seconds - Trigger time-tag seconds register . 45
F.6 trig_tag_coarse - Trigger time-tag coarse time (system clock ticks 125MHz) register

. 45
F.7 trig_tag_fine - Trigger time-tag fine time register, always 0 (used for time-tag

format compatibility) . 46
F.8 acq_start_tag_meta - Acquisition start time-tag metadata register 46
F.9 acq_start_tag_seconds - Acquisition start time-tag seconds register 46
F.10 acq_start_tag_coarse - Acquisition start time-tag coarse time (system clock ticks

125MHz) register . 46
F.11 acq_start_tag_fine - Acquisition start time-tag fine time register, always 0 (used

for time-tag format compatibility) . 47
F.12 acq_stop_tag_meta - Acquisition stop time-tag metadata register 47
F.13 acq_stop_tag_seconds - Acquisition stop time-tag seconds register 47
F.14 acq_stop_tag_coarse - Acquisition stop time-tag coarse time (system clock ticks

125MHz) register . 47
F.15 acq_stop_tag_fine - Acquisition stop time-tag fine time register, always 0 (used for

time-tag format compatibility) . 48
F.16 acq_end_tag_meta - Acquisition end time-tag metadata register 48
F.17 acq_end_tag_seconds - Acquisition end time-tag seconds register 48
F.18 acq_end_tag_coarse - Acquisition end time-tag coarse time (system clock ticks

125MHz) register . 48
F.19 acq_end_tag_fine - Acquisition end time-tag fine time register, always 0 (used for

time-tag format compatibility) . 49

iv

Appendix G SPEC Carrier Registers . 50
G.1 Memory map summary . 50
G.2 carrier - Carrier type and PCB version . 50
G.3 stat - Status . 50
G.4 ctrl - Control . 51
G.5 rst - Reset Register . 51

Appendix H SVEC Carrier Registers . 52
H.1 Memory map summary . 52
H.2 carrier - Carrier type and PCB version . 52
H.3 stat - Status . 52
H.4 ctrl - Control . 53
H.5 rst - Reset Register . 53

Appendix I Glossary . 54
I.1 Glossary . 54

Chapter 1: Repositories and Releases 1

Introduction

This document describes the gateware developed to support the FmcAdc100m14b4cha (later
refered to as fmc-adc) mezzanine card on the SPEC1 and SVEC2 carrier cards. The gateware is
the HDL code used to generate the bitstream that configures the FPGA on the carrier (sometimes
also called firmware). The gateware architecture is describled in detail. The configuration and
operation of the fmc-adc is also explained. On the other hand, this manual is not intended to
provide information about the software used to control the fmc-adc board, nor details about it’s
hardware design.

1 Repositories and Releases

This project is hosted on the Open Hardware Repository at the following link:
http://www.ohwr.org/projects/fmc-adc-100m14b4cha

Here a list of resources that you can find on the project page.

File3 contains the .bin FPGA binary file and the .pdf documentation for every official
release.

Repository4

contains the git repository of the project.

On the repository the official releases have a tag named spec-fmc-adc-v#maj.#min (or
svec-fmc-adc-v#maj.#min) where #maj represent the major release version of the gateware
and #min the minor one (e.g spec-fmc-adc-v1.2). The released FPGA binary files follow the
same naming convention.

The git commit hash has to be written in the sdb meta-information, therefore the release
consists in two commits. The commit coming right after the tagged one contains the updated
sdb meta-information file, the ise project and the synthesis, p&r, timing, reports.

Note: If you got this from the repository (as opposed to a named tar.gz or pdf file) it may
happen that you are looking at a later commit than the release this manual claims to document.
It is a fact of life that developers forget to re-read and fix documentation while updating the
code. In that case, please run “git describe HEAD” to ensure where you are.

1.1 Software Support

For information on the fmc-adc Linux software support, please refer to the following project:
http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw

As a general rule, a new minor version of the gateware, for a given major version, should
be backward compatible. If the interface with the driver changes, the major version should be
incremented. It means that driver versions 1.x should work with any gateware version 1.x. But
the driver version 2.0 might not work with the gateware version 1.1.

1 http://www.ohwr.org/projects/spec
2 http://www.ohwr.org/projects/svec
3 http://www.ohwr.org/projects/fmc-adc-100m14b4cha/files
4 http://www.ohwr.org/projects/fmc-adc-100m14b4cha/repository

http://www.ohwr.org/projects/fmc-adc-100m14b4cha
http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw
http://www.ohwr.org/projects/spec
http://www.ohwr.org/projects/svec
http://www.ohwr.org/projects/fmc-adc-100m14b4cha/files
http://www.ohwr.org/projects/fmc-adc-100m14b4cha/repository

Chapter 2: About Source Code 2

2 About Source Code

2.1 Build from Sources

The fmc-adc hdl design make use of the hdlmake1 tool. It automatically fetches the required
hdl cores and libraries. It also generates Makefiles for synthesis/par and simulation.

Here is the procedure to build the FPGA binary image from the hdl source.

1. Install hdlmake.

2. Get fmc-adc hdl sources.
git clone git://ohwr.org/fmc-projects/fmc-adc-100m14b4cha.git <src_dir>

3. Goto the synthesis directory.
cd <src_dir>/hdl/<carrier>/syn/

4. Fetch the dependencies.
hdlmake -f

5. Generate an ISE project file.
hdlmake --ise-proj

This will generate a basic ISE project file with default settings. If non-default setting is
needed (e.g. binary bitstream output file .bin), the project file must be opened using ISE
project navigator GUI and the setting changed manually.

6. Generate a synthesis Makefile.
hdlmake --make-ise

7. Check that all dependencies are fetched.
hdlmake --list

8. Synthesis, place and route.
make

2.2 Source Code Organisation

‘hdl/adc/rtl/’
ADC specific hdl sources.

‘hdl/adc/wb_gen/’
ADC specific wbgen2 sources, html documentation and C header file.

‘hdl/ip_cores/’
Location of fetched and generated hdl cores and libraries.

‘hdl/<carrier>/rtl/’
Carrier related hdl sources.

‘hdl/<carrier>/wb_gen/’
Carrier related wbgen2 sources, html documentation and C header file.

‘hdl/<carrier>/syn/’
Synthesis directory for selected carrier. This is where the synthesis top manifest and
the ISE project are stored. For each release, the synthesis, place&route and timing
reports are also saved here.

‘hdl/<carrier>/sim/’
Carrier related simulation files and testbenches.

1 http://www.ohwr.org/projects/hdl-make

http://www.ohwr.org/projects/hdl-make

Chapter 2: About Source Code 3

‘hdl/<carrier>/chipscope/’
Carrier related Chipscope projects used for debug purpose.

It could happen that a hdl source directory contains extra source files that are not used in
the current gateware release. In order to identify the source files used in a given release, refer
to the ‘Manifest.py’ files.

2.3 Dependencies

The fmc-adc gateware depends on the following hdl cores and libraries:

general-cores
repo : git://ohwr.org/hdl-core-lib/general-cores.git

branch: proposed_master

ddr3-sp6-core
repo : git://ohwr.org/hdl-core-lib/ddr3-sp6-core

branch: spec_bank3_64b_32b (for spec carrier)

branch: svec_bank4_64b_32b_bank5_64b_32b (for svec carrier)

gn4124-core (spec carrier only)
repo : git://ohwr.org/hdl-core-lib/gn4124-core.git

branch: master

vme64x-core (svec carrier only)
repo : git://ohwr.org/hdl-core-lib/vme64x-core.git

branch: master

Chapter 3: Architecture 4

3 Architecture

This chapter describes the internal blocks of the FPGA for both SPEC (PCIe) and SVEC
(VME64x) carriers. The gateware is designed around one or several Wishbone1 buses.

3.1 SPEC (PCIe carrier)

In the PCIe version of the gateware, all blocks (except the memory controller) are connected
to the PCIe bridge interface using the same Wishbone bus (main bus). The ADC samples are
written and read to/from the DDR memory using separated Wishbone buses. Due to its size, the
DDR memory is not mapped on the main Wishbone bus and can only be access through DMA.
The Figure 3.1 illustrates the fmc-adc gateware architecture on the SPEC carrier. A crossbar
from the general-cores2 library is used to map the slaves in the Wishbone address space.

ADC
core

I2C
master

I2C
master

1-wire
master

SPI
master

DDR3 memory
256MB

Timetag
core

Memory
controller

1-wire
master

Carrier
ctrl & stat

Wishbone
crossbar

SDB
records

DMA
ctrl

PCIe
core

FMC-ADC
mezzanine

PCIe
bridge

ADC

Analogue
front-end

Clock

Thermo
+ UID

EEPROM

F
M

C
 c

o
n

n
e
c
to

r

Thermo
+ UID

Wishbone bus
SlaveMaster

FPGA

SPEC (PCIe carrier)

Wishbone
crossbar

SDB
records

Interrupt
controller

(eic)

Vectored
interrupt
controller

(vic)

Interrupt
controller

(eic)Acq. start
Acq. stop
Acq. end
Trigger

Acq. end
Trigger

DMA done
DMA error

IRQ

FMC irq DMA irq

FMC-ADC
mezzanine
component

Figure 3.1: FMC-ADC gateware architecture on SPEC carrier.

There are three different Wishbone bus in the design.

Mapped WB bus (blue)
This bus connects all the peripheral to the GN4142 core.
Data: 32-bit, address: 32-bit (word aligned), clock: system clock (125MHz).

ADC core to memory controller (orange)
This bus is used to write samples from the ADC core to the DDR memory.
Data: 64-bit, address: 32-bit (word aligned), clock: system clock (125MHz).

Memory controller to GN4124 core (red)
This bus is used to read samples from the DDR memory.
Data: 32-bit, address: 32-bit (word aligned), clock: system clock (125MHz).

1 http://opencores.org/opencores,wishbone
2 http://www.ohwr.org/projects/general-cores

http://opencores.org/opencorescomma {}wishbone
http://www.ohwr.org/projects/general-cores

Chapter 3: Architecture 5

The Table 3.1 shows the Wishbone slaves mapping and hierarchy. The first column represents
the byte address offset from the start of the Wishbone address space (BAR 0).

0x0000 crossbar (sdb records)

0x1000 |-- dma controller

0x1100 |-- onewire master

0x1200 |-- spec csr

0x1300 |-- vic

0x1400 |-- dma eic

0x2000 |-- bridge (fmc slot 1) -> crossbar (sdb records)

0x3000 | |-- i2c master

0x3100 | |-- spi master

0x3200 | |-- i2c master

0x3300 | |-- adc csr

0x3400 | |-- onewire

0x3500 | |-- fmc-adc eic

0x3600 | |-- timetag core

Table 3.1: Wishbone bus memory mapping (BAR 0).

The Wishbone crossbar also implements SDB3 records. Those records describe the Wishbone
slaves and their mapping on the bus. The SDB records ROM must be located at offset 0x0.
In order to identify the gateware, SDB meta-information records are used. The ’Integration’,
’Top module repository url’ and ’Synthesis tool information’ meta-information records are used
in the design. Below is a description of the fields and their content in the fmc-adc design on
SPEC carrier.

Integration
vendor id = 0x0000CE42 (CERN vendor ID)
device id = 0x47C786A2 (echo "spec fmc-adc-100m14b4cha"|md5sum|cut -c1-8)
version = [31:16]=major, [15:0]=minor, bcd encoded
date = release date, format yyyymmdd
name = "spec fmcadc100m14b"

Top module repository url
repo url = "git://ohwr.org/fmc-projects/fmc-adc-100m14b4cha.git"

Synthesis tool information
syn module name = "spec top fmc adc"
syn commit id = git log -1 –format="%H" | cut -c1-32
syn tool name = "ISE"
syn tool version = bcd encoded synthesis tool version
syn date = synthesis date, format yyyymmdd
syn username = "mcattin" (synthesised by)

Note that some of the cores from the general-cores library are based on cores from Open-
Cores4. Therefore, the documentation for those cores is hosted on the OpenCores website.

3.1.1 Clock Domains

The SPEC version of the fmc-adc design has four different clock domains. They are listed in
the followig table.

3 http://www.ohwr.org/projects/fpga-config-space
4 http://opencores.org/

http://www.ohwr.org/projects/fpga-config-space
http://opencores.org/

Chapter 3: Architecture 6

Name Description Frequency Source
sys_clk_125 Main system clock 125.00 MHz 20MHz TCXO (carrier)
ddr_clk DDR interface clock 333.33 MHz 20MHz TCXO (carrier)
fs_clk Sampling clock 100.00 MHz 400MHz LTC2174 (mezzanine)
serdes_clk ADC data de-serialiser clock 800.00 MHz 400MHz LTC2174 (mezzanine)
p2l_clk Local bus clock 200.00 MHz 200MHz GN4124 (carrier)

3.1.2 GN4124 Core

This block is the interface between the GN41245 local bus and the other blocks in the FPGA.
The GN4124 is a four lane PCI Express Generation 1.1 bridge. In addition to th PHY, it also
contains the data link and transaction layers. The GN4124 bridge is used to access the FPGA
registers, but also to generate MSI interrupts and re-program the FPGA. The BAR 4 (Base
Address Register) allows access to the GN4124 internal registers. The BAR 0 is connected to
the local bus and therefore allows access to the FPGA.

The GN4124 core is made of a local bus interface with the GN4124 chip, a Wishbone bus
master mapped to BAR0 and a DMA controller. The DMA controller has two Wishbone ports,
a Wishbone slave to configure the DMA controller and a Wishbone master. In the fmc-adc
ghateware, the master port is connected to the DDR memory controller. The GN4124 Wishbone
interfaces (masters and slave) are 32-bit data width and 32-bit word aligned addresses.

Note: It would not be beneficial to insert an address converter (for non-interleaved data
read) between the GN4124 core and the memory controller. Because the DDR memory access
is not efficiant when reading non-consecutive addresses.

3.1.3 DMA Embedded Interrupt Controller (EIC)

The DMA EIC gathers the interrupts from the GN4124 DMA controller. There are two inputs
to the DMA EIC:

◦ DMA done: This interrupt signals the end of a DMA transfer.
◦ DMA error: This interrupt signals an error in a DMA transfer.

The two inputs are multiplexed and the result is forwarded to the VIC (Section 3.3.3 [Vectored
Interrupt Controller (VIC)], page 10). Interrupt sources can be masked using the enable and
disable registers. An interrupt is cleared by writing a one to the corresponding bit of the status
register.

The registers description can be found in annexe [DMA Embedded Interrupt Controller
Registers], page 39).

3.1.4 SPEC Carrier Control and Status Registers

This block contains control and status registers related to the SPEC carrier board. A first
register allows to readout the carrier PCB revision and carrier type. Another register signals
the presence of a mezzanine in the FMC slot, gives the status of the local bus and system PLLs
and indicates the DDR memory controller calibration state. The last register of this block allows
to control the two carrier’s LEDs on the front panel.

Note: The “Carrier Type” field is used only for test purpose. The carrier board identification
is done through the PCI Express vendor and device ID.

The registers description can be found in annexe [SPEC Carrier Registers], page 50.

5 PCI Express bridge from Semtech (formerly Gennum)

Chapter 3: Architecture 7

3.2 SVEC (VME64x carrier)

In the VME64x version of the gateware, all blocks are connected to the VME64x core using
a single Wishbone bus. Here the DDR memory is not accessed through DMA, but using a
indirect addressing scheme explained later in Section 3.3.2 [DDR Memory Controller], page 10.
A crossbar from the general-cores1 library is used to map the slaves in the Wishbone address
space.

ADC
core

I2C
master

I2C
master

1-wire
master

SPI
master

Timetag
core

DDR3 memory
256MB (2x)

Memory
controller

1-wire
master

Carrier
ctrl & stat

Wishbone
crossbar

SDB
records

VME64x
core

FMC-ADC
mezzanine

(2x)

VME
interface

ADC

Analogue
front-end

Clock

Thermo
+ UID

EEPROM

F
M

C
 c

o
n

n
e
c
to

r

Thermo
+ UID

Wishbone bus
SlaveMaster

FPGA

SVEC (VME64x carrier)

Wishbone
crossbar

SDB
records

Interrupt
controller

(eic)

Vectored
interrupt
controller

(vic)
Acq. start
Acq. stop
Acq. end
Trigger

Acq. end
Trigger

IRQ

FMC1 irq

FMC-ADC
mezzanine
component

FMC0 irq

Indirect
memory
access

I2C
master EEPROM

Clock
X'ing

Figure 3.2: FMC-ADC gateware architecture on SVEC carrier.

There are three different Wishbone bus in the design.

Mapped WB bus (blue)
This bus connects all the peripheral to the VME64x core.
Data: 32-bit, address: 32-bit (word aligned),
Clock: system clock (125MHz) and system clock / 2 (62.5MHz), see note below.

ADC cores to memory controllers (2x, orange)
Those buses are used to write samples from the ADC cores to the DDR memories.
Data: 64-bit, address: 32-bit (word aligned), clock: system clock (125MHz).

Note: The VME64x core cannot work with a clock frequency as high as 125MHz, therefore
it is clocked with half the system clock frequency. As the fmc-adc core needs 125MHz to work
properly, a Wishbone clock crossing component is inserted between the VME64x core and the
first Wishbone crossbar component. With this topology, only the VME64x core runs at a lower
frequency.

The Table 3.2 shows the Wishbone slaves mapping and hierarchy. The first column represents
the byte address offset from the start of the Wishbone address space.

1 http://www.ohwr.org/projects/general-cores

http://www.ohwr.org/projects/general-cores

Chapter 3: Architecture 8

0x0000 crossbar (sdb records)

0x1000 |-- i2c

0x1100 |-- onewire

0x1200 |-- svec csr

0x1300 |-- vic

0x2000 |-- bridge (fmc slot 1) -> crossbar (sdb records)

0x3000 | |-- i2c

0x3100 | |-- spi

0x3200 | |-- i2c

0x3300 | |-- adc csr

0x3400 | |-- onewire

0x3500 | |-- fmc_eic

0x3600 | |-- timetag

0x4000 |-- ddr_addr (fmc slot 1)

0x5000 |-- ddr_data (fmc slot 1)

0x6000 |-- bridge (fmc slot 2) -> crossbar (sdb records)

0x7000 | |-- i2c

0x7100 | |-- spi

0x7200 | |-- i2c

0x7300 | |-- adc csr

0x7400 | |-- onewire

0x7500 | |-- fmc_eic

0x7600 | |-- timetag

0x8000 |-- ddr_addr (fmc slot 2)

0x9000 |-- ddr_data (fmc slot 2)

Table 3.2: Wishbone bus memory mapping.

As for the SPEC version, SDB meta-information records are used to identify the gateware.
Below is a description of the fields and their content in the fmc-adc design on SVEC carrier.

Integration
vendor id = 0x0000CE42 (CERN vendor ID)
device id = 0x47C786A2 (echo "svec fmc-adc-100m14b4cha"|md5sum|cut -c1-8)
version = [31:16]=major, [15:0]=minor, bcd encoded
date = release date, format yyyymmdd
name = "svec fmcadc100m14b"

Top module repository url
repo url = "git://ohwr.org/fmc-projects/fmc-adc-100m14b4cha.git"

Synthesis tool information
syn module name = "svec top fmc adc"
syn commit id = git log -1 –format="%H" | cut -c1-32
syn tool name = "ISE"
syn tool version = bcd encoded synthesis tool version
syn date = synthesis date, format yyyymmdd
syn username = "mcattin" (synthesised by)

Chapter 3: Architecture 9

3.2.1 Clock Domains

The SPEC version of the fmc-adc design has four different clock domains. They are listed in
the followig table.

Name Description Frequency Source
sys_clk_125 Main system clock 125.00 MHz 20MHz TCXO (carrier)
sys_clk_62_5 System clock / 2 62.50 MHz 20MHz TCXO (carrier)
ddr_clk DDR interface clock 333.33 MHz 20MHz TCXO (carrier)
fs_clk Sampling clock 100.00 MHz 400MHz LTC2174 (mezzanine)
serdes_clk ADC data de-serialiser clock 800.00 MHz 400MHz LTC2174 (mezzanine)

3.2.2 VME64x Core

The VME64x core implements a VME slave on one side and a Wishbone pipelined master on
the other side. For more information about the VME64x core, visit the OHWR page1.

3.2.3 SVEC Carrier Control and Status

This block contains control and status registers related to the SVEC carrier board. The registers
description can be found in annexe ([SVEC Carrier Registers], page 52).

3.2.4 SVEC Carrier I2C Master

The I2C master accesses the 24AA64 64Kb EEPROM memory chip located on the SVEC board.
This memory is useful to store board specific data (e.g. MAC address, White Rabbit calibration
data). This block is based on an OpenCores design.

I2C slave address Peripheral
0x51 24AA64 64Kb EEPROM memory

This block is clocked by the system clock (125 MHz). Therefore for a SCL clock of 100 kHz,
the prescaler configuration is PRESCALER=249.

PRESCALER = f_sys / (5 * f_scl) - 1

http://opencores.org/project,i2c

http://ww1.microchip.com/downloads/en/devicedoc/21189f.pdf

1 http://www.ohwr.org/projects/vme64x-core

http://opencores.org/projectcomma {}i2c
http://ww1.microchip.com/downloads/en/devicedoc/21189f.pdf
http://www.ohwr.org/projects/vme64x-core

Chapter 3: Architecture 10

3.3 Common Cores

3.3.1 Carrier 1-wire Master

This 1-wire master controls the DS18B20 thermometer chip located on the carrier board. This
chip also contains a unique 64-bit identifier. This block is based on an OpenCores design.

This block is clocked by the system clock (125 MHz). Therefore the dividers configuration
are CDR_N=624 and CDR_O=124.

CDR_N = f_sys * 5E-6 - 1

CDR_O = f_sys * 1E-6 - 1

http://opencores.org/project,sockit_owm

3.3.2 DDR Memory Controller

The memory controller block is the interface between the 256MB DDR3 memory located on the
carrier boards and the other blocks in the FPGA. It is basically a MCB core (Memory Controller
Block) generated with Xilinx CoreGen and an additional wrapper implementing two Wishbone
slave interfaces. One of the Wishbone slave interface is connected to the ADC core. In the SPEC
gateware, the other Wishbone slave interface is connected to the DMA Wishbone master of the
GN4124 core. While in the SVEC gateware, the other slave Wishbone interface is connected to
an indirect addressing block. This block consists in an address pointer register and a data FIFO.
To access the DDR memory, the VME host sets the address pointer and then read/write data
using the FIFO. On each access to the FIFO, the address pointer is automatically incremented.

WB Slave Description Data width Access type
0 ADC core 64-bit Write only
1 host side 32-bit Read/write

The memory controller side connected to the chip is 16-bit DDR data bus, clocked at 333.33
MHz. This gives a maximum bandwidth of 1333.33 MB/s. Each of the four channel is 200
MB/s, for a total of 800 MB/s. In the current design, the two Wishbone port have the same
priority. The arbitration is done with a simple round-robin. Therefore, the samples stored in
the DDR memory cannot be read during an acquisition.

http://www.ohwr.org/projects/ddr3-sp6-core

http://www.xilinx.com/support/documentation/user_guides/ug388.pdf

3.3.3 Vectored Interrupt Controller (VIC)

In order to to redirect interrupts from different cores to corresponding driver in the Linux
kernel in a generic way, a two layers scheme is used. The first layer is the Embedded Interrupt
Controllers (EIC) in each core multiplexing interrupt sources to a single line. The second layer
is the Vectored Interrupt Controller (VIC) multiplexing the interrupt lines from the EICs into
a single line to the host. The VIC keeps a table, initialized with the base addresses of the EICs
connected to each of the input.

Note that the VIC configuration is different between the SPEC and SVEC carriers. The
SPEC uses an edge sensitive scheme while the SVEC uses a level sensitive scheme.

SPEC, VIC control register:
enable = 1
polarity = 1
emulate edge sensitive = 1
edge emulation pulse = 750

http://opencores.org/projectcomma {}sockit_owm
http://www.ohwr.org/projects/ddr3-sp6-core
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf

Chapter 3: Architecture 11

SVEC, VIC control register:
enable = 1
polarity = 1

Note: On the SPEC carrier, the VIC interrupt request output is connected to the GPIO 8 of
the GN4124 chip. Therefore, the GN4124 must be configured to generate a MSI when a rising
edge is detected on GPIO 8.

The registers description can be found in annexe [Vectored Interrupt Controller], page 41).

Chapter 3: Architecture 12

3.4 FMC-ADC Core

The ADC core is the main block of the design. On the mezzanine interface side, it takes a data
flow from the LTC2174 ADC chip, an external trigger and controls the analogue switches to
select the input range or calibration mode. On the internal interface side, it has a Wishbone
master to write data to the DDR memory controller. It also has a Wishbone slave to access the
internal components.

The internal detailed functionning of this block is described further in the document(See
Chapter 4 [Configuration], page 15, Chapter 6 [Acquisition], page 21 and Chapter 5 [Calibration],
page 19).

3.4.1 Sampling clock

The sampling frequency is determined by a Si570 programmable oscillator located on the fmc-
adc mezzanine. By default, the sampling clock is 100MHz (oscillator factor default value). But
it can be changed to any frequency from 10MHz to 105MHz. The lower bound is defined by the
Si570 oscillator. While the upper bound is limited by the LTC2174 ADC.

The Si570 clock output is connected to the LTC2174 ADC. Then the data clock (DCO)
output of the LTC2174 is connected to the FPGA. The data clock is four times the sampling
clock. The sampling clock (fs_clk) and the ADC data de-serialiser clock (serdes_clk) are
derived from the data clock using a PLL (internal to the FPGA).

3.4.2 Time-tagging Core

This block allows time-tagging of important events in the ADC core. It is based on two free-
running counters; a seconds counter and a 125MHz system clock ticks counter. The system clock
ticks counter is also called coarse counter. Those two counters are accessible in read/write via
a Wishbone interface.

For example, the host computer can use the OS time to set the seconds counter and simply
reset the coarse counter. It is planned, in a later release, to set the time-tagging core counters us-
ing the White Rabbit core, for more details see Chapter 7 [Missing Features and Improvements],
page 25.

A time-tag is made of four 32-bit words; meta-data, seconds, coarse, fine. The fine field is
always set to zero. And the meta-data register does not contain useful information, only random
data for debugging purposes.

The following events are time-tagged:
◦ Trigger
◦ Acquisition start
◦ Acquisition stop
◦ Acquisition end

Note: The trigger time tag corresponds to the moment when the acquisition state machine
leaves the WAIT_TRIG state.

Note: The trigger time-tag is also stored in the data memory, after the post-trigger samples.
This allows to always have trigger time-tag, even in multi-shot mode (retreiving the time-tag
using the trigger interrupt was not fast enough in certain cases).

Note: If during an acqusition no stop command is issued (normal case), the acquisition
time-tag is not updated.

The register description can be found in annexe [Time-tagging Core Registers], page 44.

Chapter 3: Architecture 13

3.4.3 FMC-ADC Control and Status Registers

This block contains control and status registers related to the fmc-adc core. The registers
description can be found in annexe ([ADC Core Registers], page 28).

3.4.4 Mezzanine SPI Master

This SPI master controls the LTC2174 ADC and the four MAX5442 offset DACs. The following
table shows how the peripherals are wired to the core. This block is based on an OpenCores
design.

SPI slave select Peripheral
0 LTC2174 ADC
1 MAX5442 DAC for channel 1
2 MAX5442 DAC for channel 2
3 MAX5442 DAC for channel 3
4 MAX5442 DAC for channel 4

This block is clocked by the system clock (125 MHz). Therefore for a SCLK of ~620 kHz,
the divider configuration is DIVIDER=100.

f_sclk = f_sys / ((DIVIDER+1) * 2)

http://opencores.org/project,spi

http://cds.linear.com/docs/en/datasheet/21754314fa.pdf

http://datasheets.maximintegrated.com/en/ds/MAX5441-MAX5444.pdf

3.4.5 Mezzanine 1-wire Master

This 1-wire master controls the DS18B20 thermometer chip located on the mezzanine board.
This chip also contains a unique 64-bit identifier. This block is based on an OpenCores design.

This block is clocked by the system clock (125 MHz). Therefore the dividers configuration
are CDR_N=624 and CDR_O=124.

http://opencores.org/project,sockit_owm

http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf

3.4.6 Mezzanine I2C Master

This I2C master controls the Si570 programmable oscillator chip located on the mezzanine board.
This chip is used to produce the ADC sampling clock. This block is based on an OpenCores
design.

I2C slave address Peripheral
0x55 Si570 programmable oscillator

This block is clocked by the system clock (125 MHz). Therefore for a SCL clock of 100 kHz,
the prescaler configuration is PRESCALER=249.

PRESCALER = f_sys / (5 * f_scl) - 1

http://opencores.org/project,i2c

https://www.silabs.com/Support%20Documents/TechnicalDocs/si570.pdf

http://opencores.org/projectcomma {}spi
http://cds.linear.com/docs/en/datasheet/21754314fa.pdf
http://datasheets.maximintegrated.com/en/ds/MAX5441-MAX5444.pdf
http://opencores.org/projectcomma {}sockit_owm
http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
http://opencores.org/projectcomma {}i2c
https://www.silabs.com/Support%20Documents/TechnicalDocs/si570.pdf

Chapter 3: Architecture 14

3.4.7 Mezzanine System Management I2C Master

This I2C master access the 24AA64 64Kb EEPROM memory chip located on the mezzanine
board. This memory is mandatory as specified in the FMC standard (VITA 57.1). It is connected
to the system management I2C bus, also specified in the FMC standard. This block is based on
an OpenCores design.

I2C slave address Peripheral
0x50 24AA64 64Kb EEPROM memory

This block is clocked by the system clock (125 MHz). Therefore for a SCL clock of 100 kHz,
the prescaler configuration is PRESCALER=249.

PRESCALER = f_sys / (5 * f_scl) - 1

http://opencores.org/project,i2c

http://ww1.microchip.com/downloads/en/devicedoc/21189f.pdf

3.4.8 FMC-ADC Embedded Interrupt Controller (EIC)

The fmc-adc EIC gathers the interrupts from the ADC core. There are two inputs to the fmc-adc
EIC:

◦ Trigger: This interrupt signals that a valid trigger arrived while the acquisition state ma-
chine was in the WAIT_TRIG state.

◦ Acquisition end: This interrupt signals the end of an acquisition. In case of multi-shot
acquisition, it occurs at the end of the last shot.

The two inputs are multiplexed and the result is forwarded to the VIC (Section 3.3.3 [Vectored
Interrupt Controller (VIC)], page 10). Interrupt sources can be masked using the enable and
disable registers. An interrupt is cleared by writing a one to the corresponding bit of the status
register.

The registers description can be found in annexe [FMC-ADC Embedded Interrupt Controller
Registers], page 37).

http://opencores.org/projectcomma {}i2c
http://ww1.microchip.com/downloads/en/devicedoc/21189f.pdf

Chapter 4: Configuration 15

4 Configuration

The Figure 4.1 is a block diagram of the ADC core part in the sampling clock domain. It
contains a ADC data stream de-serialiser, an offset and gain correction block (for ADC data),
an under-sampling block and a trigger unit. The four channels data and the trigger signal are
synchronised to the system clock domain using a FIFO. The configuration signals coming from
registers in the system clock domain are synchronised to the sampling clock within the Wishbone
slave (wbgen2 feature).

SerDes

Offset/Gain
correction

Sync
FIFO

Trigger
unit

Undersampling

Sampling clock

ADC serial data
4x2 data lines
1x frame

External trigger

Data and trigger
to acquisition logic

Configuration

Software trigger
Configuration

Sync

Sync

Sync

Sampling clock domain System clock domain

Ch. 1
Ch. 2
Ch. 3
Ch. 4

}

}

Figure 4.1: ADC core diagram (sampling clock domain).

The LTC2174 is by default configured as 2-Lane Output Mode, 16-Bit Serialization. In the
fmc-adc application, the default configuration is kept. The figure Figure 4.2 is an extract from
the LTC2174 datasheet illustrating the 2-Lane Output Mode, 16-Bit Serialization waveforms.

LTC2175-14/
LTC2174-14/LTC2173-14

8
21754314fa

 2-Lane Output Mode, 14-Bit Serialization

ANALOG
INPUT

ENC–

ENC+

DCO–

DCO+

tAP

tENCH tENCL

tSER

tSER

tSERtPD

tDATAtFRAME

SAMPLE N-6 SAMPLE N-5 SAMPLE N-4 SAMPLE N-3

N+1

N+2N

217514 TD02

D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9
OUT#A–

OUT#A+

FR–

FR+

D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8
OUT#B–

OUT#B+

NOTE THAT IN THIS MODE FR+/FR– HAS TWO TIMES THE PERIOD OF ENC+/ENC–

Timing Diagrams

2-Lane Output Mode, 16-Bit Serialization*

ANALOG
INPUT

ENC–

ENC+

DCO–

DCO+

tAP

tENCH tENCL

tSER

tSER

tSERtPD

tDATAtFRAME

SAMPLE N-6

*SEE THE DIGITAL OUTPUTS SECTION

SAMPLE N-5 SAMPLE N-4

N+1
N

217514 TD01

D5 D3 D1 0 D13 D11 D9 D7 D5 D3 D1 0 D13 D11 D9
OUT#A–

OUT#A+

FR–

FR+

D4 D2 D0 0 D12 D10 D8 D6 D4 D2 D0 0 D12 D10 D8
OUT#B–

OUT#B+

Figure 4.2: LTC2174 data output mode waveforms.

There is two 800Mb/s lanes per ADC channel. The eight data lanes and the frame rate (FR)
lane are fed to a de-serialiser in the FPGA. The frame rate signal is used to align the de-serialiser
to data words. The four channel data (16-bit) are concatenated together to form a 64-bit vector.
As show in Figure 4.2, the two LSB bits of a data word are set to zero.

4.1 Control and Status Registers

Writing one to to the FMC_CLK_OE field of the ADC core control register enables the sampling
clock (Si570 chip). Also, in order to use the input offset DACs, the OFFSET_DAC_CLR_N field
must be set to one.

Chapter 4: Configuration 16

The field MAN_BITSLIP allows to ’manually’ control the ADC data alignment in the de-
serialiser. When TEST_DATA_EN is set, the ADC core writes the address pointer to the memory
instead of the ADC samples. The fields TRIG_LED and ACQ_LED allows to control the FMC front
panel LEDs. Those four fields are for test purpose only and must stay zero in normal operation.

When the sampling clock is enabled, the SERDES_PLL and SERDES_SYNCED field from the ADC
core status register must be set to one.

4.2 Input Ranges

The Figure 4.3 shows a simplified schematics of the analogue input used for each channel. Each
input can be independantly configured with one of the three available ranges; 100mV, 1V, 10V.
Each range is defined as the maximum peak-to-peak input voltage. Independantly to the selected
range, a 50ohms termination can be added to each input.

In addition to the three ranges for normal operation, there are three more configurations
used for offset calibration of each range.

Opto-isolated analogue switches allow the different configurations. They are represented by
normal switched in the simplified schematics.

SW1

SW2 SW3

SW4 SW5

SW6

SW7

47R 2k2

86R6

86R6 86R6

86R6

820R

825R

825R 825R

V
+

V
-

Input connector

GND

GND GND

GND

V+

V-

From offset DAC

To filter and ADC

Figure 4.3: Simplified schematics of the analogue input.

Only the following input switch configurations are valid. For all others switch configurations,
the behaviour is not defined and therefore shouldn’t be used.

SW[7..1] SW7 SW6 SW5 SW4 SW3 SW2 SW1 Description
0x23 OFF ON OFF X OFF ON ON 100mV range
0x11 OFF OFF ON X OFF OFF ON 1V range
0x45 ON OFF OFF X ON OFF ON 10V range
0x42 ON OFF OFF X OFF ON OFF 100mV range offset calibration
0x40 ON OFF OFF X OFF OFF OFF 1V range offset calibration
0x44 ON OFF OFF X ON OFF OFF 10V range offset calibration
0x00 X OFF OFF OFF X X OFF Input disconnected
0x08 X X X ON X X X 50ohm termination

Table 4.1: Analogue input switches configurations.

4.3 Input Offset

Each channel has a 16-bit DAC allowing to apply a dc offset to the input signal. The voltage
range of the DAC is 10V (-5V to +5V) and is independent from the selected input range. The
following equation shows how to convert a digital value written to a DAC to an offset voltage.

Chapter 4: Configuration 17

v_dac = (v_ref * d_dac/0x8000) - v_ref

Where:

v_ref = DAC’s voltage reference = 5V

d_dac = Digital value written to the DAC

v_dac = DAC voltage

Example:

0xFFFF => 4.999V

0x8000 => 0.000V

0x0000 => -5.000V

The following equation shows the relation between the input voltage and the offset (applied
by the DAC). Note that the offset from the DAC is subtracted from the input voltage.

v_out = v_in - v_dac

Where:

v_in = Input voltage

v_dac = DAC voltage

v_out = Output voltage (to filter and ADC)

4.4 Trigger

The trigger unit is made of a hardware and a software source. Each hardware and software
sources can be enabled independantly. The two sources are then or’ed together to drive a delay
generator. The delay generator allows to insert an defined number of sampling clock period
before the trigger goes to the acquisition state machine.

Threshold
detection

Sync
Delay

Edge
detection

Data

Polarity

Sync
FIFO

Threshold

Hardware trigger
enable

Software trigger
enable

Software trigger

Channel
selection

External
trigger

Figure 4.4: Trigger unit diagram.

The hardware trigger source can be either internal (based on an adc input channel) or external
(dedicated trigger input). For both internal and external hardware triggers, the polarity can
be selected between positive and negative slope (resp. rising and falling edge). By default
the polatity is set to positive slope. The external trigger input is synchronised to the sampling
clock. The external trigger pulse must be at least one sampling clock cycle wide. For the internal
trigger source, the adc input channel and the threshold should be configured. By default, the
channel 1 is selected and the threshold is set to 0. Note that the threshold is 16-bit signed
(two’s complement). The Figure 4.5 sketches the internal hardware trigger threshold behaviour.
The software trigger source concists in a pulse generated when a write cycle is detected on the
Software trigger register. The Figure 4.4 shows the different trigger configurations. For futher
information on the trigger configuration registers see [ADC Core Registers], page 28.

Chapter 4: Configuration 18

time

ADC value

0x0000
0x0001

0x3FFF

0xFFFF

0x8000

Trigger threshold
(e.g. 0xC000)

0xFFFE

0x0002

positive slope

negative slope

Polarity configuration

Figure 4.5: Internal hardware trigger trheshold.

4.5 Undersampling

The undersampling block is simply validating one in N samples and forwarding it to the acqui-
sition logic. The number (N) is configured in the Sample rate register. If N > 1, then the trigger
pulse is aligned to the next valid sample. If N = 1 all the samples are valid and therefore the
trigger is always aligned. A value of N = 0 is treated as N = 1 in the gateware.

Note: Undersampling might be unaccurately called decimation in the documentation or
source code.

Chapter 5: Calibration 19

5 Calibration

The calibration is done once during the production tests. It can be repeated afterwards with
the production test suite (PTS) and the corresponding testbench. The calibration process gives
the following four values per channel and per input range:

◦ ADC gain correction
◦ ADC offset correction
◦ DAC gain correction
◦ DAC offset correction

Note that the temperature during the calibration process is also measured. This could be
used for later temperature compensated calibration value computing.

5.1 Calibration data storage

All the calibration values are stored in the FmcAdc100m14b4cha EEPROM. The EEPROM
holds a sdbfs1 file system. In addition to the calibration values, the EEPROM also contains
mandatory IPMI2 records specified in the FMC Standard VITA 57.1 (see table Table 5.1 for
mapping).

Byte offset File name File Type Description
0x0 IPMI-FRU binary IPMI records
0x100 calib binary Calibration values
auto name ascii Contains "adc 100m"

0x800 data binary Empty directory
0x200 . binary Root directory

vendor = 0xCE42
device = 0xC5BE045E

Table 5.1: EEPROM sdb file system.

Note that the vendor value 0xCE42 corresponds to CERN. While the device value
0xC5BE045E corresponds to the first 32-bit of the md5 sum of "fmc-adc-100m14b4cha".

5.2 Calibration Data Usage

5.2.1 ADC Calibration

Two registers per channel are implemented in the FPGA for ADC gain and offset correction.
When an input range is selected, the corresponding gain/offset correction values must be loaded
from the EEPROM to those registers.

Saturate

Offset correction
16-bit signed

Gain correction
16-bit fixed point

Raw ADC data
16-bit signed

Corrected data
16-bit signed

Figure 5.1: ADC offset and gain correction block.

1 http://www.ohwr.org/attachments/download/1594/sdbfs-2012-09-19.pdf
2 Platform Management FRU Information Storage Definition v1.0

http://www.ohwr.org/attachments/download/1594/sdbfs-2012-09-19.pdf

Chapter 5: Calibration 20

The offset register takes a 16-bit signed value. The gain register takes a 16-bit fixed point
value. The fixed point format is as follow:

Bit

2^0

15

Weigth

14 13 12 1 0

2^(-1) 2^(-2) 2^(-3) 2^(-14) 2^(-15)2^(-12) 2^(-13)

23

...

...

Figure 5.2: ADC gain register format.

Note: On FPGA start-up, the gain registers are set to 0x8000 (1.000) and the offset registers
to 0x0000. This means a unit gain and no offset.

Note: After gain and offset correction, the two LSB of the data words can be different from
zero.

Note: It is usually the driver’s task to read the calibration data from the FMC EEPROM
and load them to the corresponding registers. This has to be done once at start-up and then
every time the input range is changed.

5.2.2 DAC Calibration

The DAC value is only set once before an acquisition. Therefore, there is no need to implement
the gain and offset correction in the FPGA. The software controlling the fmc-adc must apply
the DAC gain and offset correction prior to write a value to the DAC. As for the ADC correction
values, there is one pair (offset, gain) of DAC correction values per input range.

Below is the formula to calculate the corrected DAC value (applying gain and offset correc-
tion):

c_val = ((val + offset) * gain/0x8000) - 0x8000

where:

c_val = corrected value to write to DAC (16-bit unsigned)

val = value from user (16-bit signed)

offset = DAC offset calibration value from EEPROM (16-bit signed)

gain = DAC gain calibration value from EEPROM (16-bit fixed point)

Chapter 6: Acquisition 21

6 Acquisition

This chapter describes the two modes of acquisition, single-shot and multi-shot. It also explains
how the software is expected to control the fmc-adc acquisitions.

The Figure 6.1 shows the ADC core acquisition logic. The heart of the acquisition logic is
a state machine driven by user commands (start, stop), the trigger signal and counters events
(e.g. pre-trig done, etc...). The ADC samples are routed along a datapath (bold arrows), which
depends on the acquisition mode. It is explained in detail in the Section 6.1 [Single-shot Mode],
page 22 and Section 6.2 [Multi-shot Mode], page 23. The four channels data and the trigger are
concatenated together and fed to a FIFO to be synchronised between the sampling clock domain
and the system clock domain. Even if the LTC2174 ADC is 14-bit, the data of each channel is
stored in a 16-bit word. Along the datapath, we call sample a 64-bit vector containing a sample
for each channel. At the output of the ADC core, a flow control FIFO allows to cope with the
memory controller temporary unavailabilities (due to DDR refresh cycles).

Flow
control
FIFO

DPRAM
0

DPRAM
1

Addr.
cnt

A

Pre-trig
cnt

Post-trig
cnt

Shots
cnt

Addr.
cnt

B

Sampling
clock domain System clock domain

Sync
FIFO
Sync
FIFO

Data

Single-shot

Multi-shot

Trigger

addr_a @ trig
addr_a @ post_done

Wishbone
master
interface

Ch. 1
Ch. 2
Ch. 3
Ch. 4

Acq.
FSM

Commands

Trigger
unit

}
Trigger

time-tag

Figure 6.1: Acquisition logic diagram (system clock domain).

Samples are stored interleaved in the DDR memory. The Figure 6.2 illustrates the way sam-
ples are written, stored and read in the DDR memory. The DDR memory size is 2Gb or 256MB.
It means that the maximum number of samples that can be stored is 128M samples (227 ∗ 16).

DDR memory

0x00
16-bit

0x02
0x04
0x06
0x08
0x0A
0x0C
0x0E
0x10

ch. 1
ch. 2
ch. 3
ch. 4
ch. 1
ch. 2
ch. 3
ch. 4

ch. 1ch. 2ch. 3ch. 4

ch. 1ch. 2ch. 3ch. 4

ch. 1ch. 2

ch. 3ch. 4

ch. 1ch. 2

ch. 3ch. 4

byte addr.

ch. 1
ch. 2
ch. 3
ch. 4

0x12
0x14
0x16

ch. 1ch. 2ch. 3ch. 4

ch. 1ch. 2

ch. 3ch. 4

64-bit 32-bitLSBMSB LSBMSB

Samples write
(from ADC core)

Samples read
(from host)

Figure 6.2: Illustation of samples storage in DDR memory.

The acquisition process is driven by a state machine. The Figure 6.3 represents its states and
transitions. At start-up, the state machine is IDLE, waiting for an acquisistion start command
(ACQ_START). Commands are sent to the state machine by writing in the FSM_CMD field of the

Chapter 6: Acquisition 22

control register (see [ADC Core Registers], page 28). When a start command is received, the
state machine goes to PRE_TRIG and stays in this state until the programmed number of pre-
trigger samples are recorded. After that, it goes in WAIT_TRIG state and continue recording
sample to memory. When a valid trigger is detected, the state machine moves to POST_TRIG. It
will stays in this state until the programmed number of post-trigger samples is reached. The next
state is TRIG_TAG were the trigger time-tag (4x 32-bit word) is pushed after the last post-trigger
sample (to be stored in DDR memory). Then, depending on the mode, the state machine either
goes back to IDLE (single-shot mode) or to DECR_SHOT (multi-shot mode). From DECR_SHOT it
either goes back to IDLE if the number of shots is reached or goes to PRE_TRIG for the next shot.
When the acquisition is finished (state machine back to IDLE) and all samples have been written
to the DDR memory, only then the software can retrieve the samples using DMA transfer. An
interrupt is generated when the acquisition ends.

Note: Start commands are taken into account only in IDLE state.

Note: Trigger are taken into account only in WAIT_TRIG state.

Note: A stop command will bring the state machine back to IDLE from any state.

Note: After a stop command, no end of acquisition interrupt is generated.

IDLE

PRE_TRIG

WAIT_TRIG

DECR_SHOT

POST_TRIG

ACQ_STOP

ACQ_START

PRE_TRIG_DONE

TRIG

SHOTS_DONE

!(SINGLE_SHOT)
TRIG_TAG

POST_TRIG_DONE

!(SHOTS_DONE)

SINGLE_SHOT

Figure 6.3: Acquisition state machine.

There are two LED on the fmc-adc front panel. The LED labeled ACQ is turned ON when
the acquisition state machine is not in the IDLE state. The LED labeled TRIG flashes when a
valid trigger is detected and the acquisition state machine is in the WAIT_TRIG state.

Note: The number of pre-trigger sample can be zero, but there must be at least one post-
trigger sample.

Note: In addition to the requested pre/post-trigger samples, an additional sample, corre-
sponding to the trigger, will be recoded.

Note: The start of an acquisition is prohibited if either the number of shot or the number of
post-trigger samples is equal to zero.

6.1 Single-shot Mode

The procedure below lists the different step of a single-shot acquisition process.

1. Configure acquisition (trigger, number of samples, interrupts, etc...).

2. Issue a start acquisition command (the acquisition state machine must be IDLE).

3. When a valid trigger is detected, an interrupt is generated (if enabled).

4. At the end of the acquisition, another interrupt is generated.

5. Read trigger position register.

6. Configure the DMA to retreive data.

7. Start the DMA transfer (the acquisition state machine must be IDLE).

Chapter 6: Acquisition 23

8. When the DMA transfer is done, an interrupt is generated.

9. The board is ready for a new acquisition start command.

In single-shot mode, the DDR memory is used as a circular buffer. When the acquisition
starts, samples are direcly written to the DDR memory (via FIFOs). The acquisition logic stops
writing to the memory when the configured number of pre/post-trigger samples is reached.
It could happen that the write pointer reaches the top of the memory before the end of the
acquisition. In this case, the write pointer is reset to address zero and overwrite previous
samples. In order to allow the software to retreive the requested samples (around the trigger),
the Trigger address register stores the write pointer address at the trigger moment.

Note: The value stored in the Trigger address register is a byte address.

Note: Every new acquisition starts writing at address 0x0.

The Figure 6.4 and Figure 6.5 illustrate the use of the DDR memory as a cicular buffer. The
acquisition state machine is also represented.

Events :

Memory :

State machine :

ACQ_START TRIG ACQ_END

PRE_TRIG WAIT_TRIG POST_TRIG IDLE

0x0 0x0fffffff

PRE_TRIG
SAMPLES

POST_TRIG
SAMPLES

TRIGGER TIME-TAG

Figure 6.4: Single-shot mode acquisition example.

Events :

Memory :

State machine :

ACQ_START TRIGACQ_END

PRE_TRIG WAIT_TRIG

POST_TRIG IDLE

0x0 0x0fffffff

POST_TRIG
SAMPLES

POST_TRIG
SAMPLES

PRE_TRIG
SAMPLES

POST_TRIG

TRIGGER TIME-TAG

Figure 6.5: Single-shot mode acquisition example (overlapping DDR memory).

Note: Orange: Samples written to memory and read back via DMA. Grey : Samples written
to memory, but not read. White: Empty memory (or previous acquisition samples).

6.2 Multi-shot Mode

The multi-shot acquisition process is almost identical to the single-shot one, except that once
the acquisition is started it will go around the state machine as many time as the number of
configured shots. It means that if the board is configured for N shots, it will generate N trigger
interrupts (if enabled) and then another interrupt at the end of the acquisition.

Unlike the single-mode acquisition, in multi-shot, the DDR memory is not used as a circular
buffer. Instead, two dual port RAM (dpram) are implemented inside the FPGA. Those dprams
are alternatively used as circular buffer for each shot. Even shots uses dpram0 and odd shots
dpram1.

Note: The dprams are 2048 samples deep (sample = 4x16 = 64 bits). The trigger time-tag
requires two 64-bit word to be stored at the end of the samples. It means that the total number
of samples (pre-trigger + trigger + post-trigger) for a shot cannot exceed 2048-2=2046.

Chapter 6: Acquisition 24

When a shot is finished, the correcponding dpram samples are written to the DDR memory.
Only the pre-trigger samples, the post-trigger samples and the trigger time-tag are written.
The first shot is written starting at address 0x0. Then the second shot is written right after
the trigger time-tag of the first shot. The Figure 6.6 shows the shots organisation in the DDR
memory.

Memory :

0x0 0x0fffffff

POST_TRIG
SAMPLES

PRE_TRIG
SAMPLES

POST_TRIG
SAMPLES

PRE_TRIG
SAMPLES

POST_TRIG
SAMPLES

PRE_TRIG
SAMPLES

TRIG SAMPLE TRIG TAG TRIG TAG TRIG TAGTRIG SAMPLE TRIG SAMPLE

Figure 6.6: DDR memory usage in multi-shot mode acquisition.

Note: The number of samples per shot stored in memory is equal to: number of pre-trigger
samples + number of post-trigger samples + 1 (trigger sample).

Chapter 7: Missing Features and Improvements 25

7 Missing Features and Improvements

7.1 To be done before next release
◦ Remove huge files from git repo. !!! This will change all commits sha !!!

7.2 For a later release
◦ Add WR core; 1)for time-tags, 2)for sampling clock control

- Define behaviour when WR is desconnected.
- Assign signals to SPEC front panel LEDs.

◦ Add Etherbone support.
◦ Unify address inferfaces: put all in bytes (wishbone addr, trig pointer, ...)

- Change GN4142-core WB bus(es) to byte address.
- Change DDR-core WB bus(es) to byte address?

◦ Add error flags (interrupt?):
- Instead of overwriting memory for a given acquisition.
- If read during acquisition (or even block read during acq?).

◦ Rename decimation (and "sample rate" register) in under-sampling.
◦ Use 200MHz clock for WB bus from ddr-ctrl to gn4124-core.
◦ Clean-up adc core WB interface to DDR -> use only one clock (=> sys clk).
◦ Replace all Xilinx FIFO by generic ones from general-cores lib (! last time I tried, it broke

the DMA.).
- Seems to work with proposed master (05.08.2013).
- Still need to replace FIFO in adc core.

◦ Test sampling clocks from 10MHz to 105MHz.
◦ Add sampling clock presence flag. Or better a sampling clock frequency register.
◦ Add over-heat and input over-load interrupts? (from original specification)
◦ Review reset logic.
◦ Generate an end of acquisition interrupt after an acquisition stop command?
◦ Include the git tree in a .tar.gz along with the .bin file (in the files section) for each release.

-> modify the Release chapter accordingly.
◦ Use git submodules for dependencies (allows to work without hdlmake).

Appendix A: 26

Appendix A

A.1 Calibration Data Storage in EEPROM

Tables Table A.1 and Table A.2 shows the calibration data types and the arrangement in the
binary file. The first column "Byte offset" represents the offset within the binary file.

Byte
offset

Input
range

Description Type

0x0 10V Offset correction channel 1 16-bit signed
0x2 Offset correction channel 2 16-bit signed
0x4 Offset correction channel 3 16-bit signed
0x6 Offset correction channel 4 16-bit signed
0x8 Gain correction channel 1 16-bit unsigned
0xA Gain correction channel 2 16-bit unsigned
0xC Gain correction channel 3 16-bit unsigned
0xE Gain correction channel 4 16-bit unsigned
0x10 Temperature 16-bit unsigned * 0.01◦

0x12 1V Offset correction channel 1 16-bit signed
0x14 Offset correction channel 2 16-bit signed
0x16 Offset correction channel 3 16-bit signed
0x18 Offset correction channel 4 16-bit signed
0x1A Gain correction channel 1 16-bit unsigned
0x1C Gain correction channel 2 16-bit unsigned
0x1E Gain correction channel 3 16-bit unsigned
0x20 Gain correction channel 4 16-bit unsigned
0x22 Temperature 16-bit unsigned * 0.01◦

0x24 100mV Offset correction channel 1 16-bit signed
0x26 Offset correction channel 2 16-bit signed
0x28 Offset correction channel 3 16-bit signed
0x2A Offset correction channel 4 16-bit signed
0x2C Gain correction channel 1 16-bit unsigned
0x2E Gain correction channel 2 16-bit unsigned
0x30 Gain correction channel 3 16-bit unsigned
0x32 Gain correction channel 4 16-bit unsigned
0x34 Temperature 16-bit unsigned * 0.01◦

Table A.1: ADC calibration data stored in EEPROM (calib file).

Appendix A: 27

Byte
offset

Input
range

Description Type

0x36 10V Offset correction channel 1 16-bit signed
0x38 Offset correction channel 2 16-bit signed
0x3A Offset correction channel 3 16-bit signed
0x3C Offset correction channel 4 16-bit signed
0x3E Gain correction channel 1 16-bit unsigned
0x40 Gain correction channel 2 16-bit unsigned
0x42 Gain correction channel 3 16-bit unsigned
0x44 Gain correction channel 4 16-bit unsigned
0x46 Temperature 16-bit unsigned * 0.01◦

0x48 1V Offset correction channel 1 16-bit signed
0x4A Offset correction channel 2 16-bit signed
0x4C Offset correction channel 3 16-bit signed
0x4E Offset correction channel 4 16-bit signed
0x50 Gain correction channel 1 16-bit unsigned
0x52 Gain correction channel 2 16-bit unsigned
0x54 Gain correction channel 3 16-bit unsigned
0x56 Gain correction channel 4 16-bit unsigned
0x58 Temperature 16-bit unsigned * 0.01◦

0x5A 100mV Offset correction channel 1 16-bit signed
0x5C Offset correction channel 2 16-bit signed
0x5E Offset correction channel 3 16-bit signed
0x60 Offset correction channel 4 16-bit signed
0x62 Gain correction channel 1 16-bit unsigned
0x64 Gain correction channel 2 16-bit unsigned
0x66 Gain correction channel 3 16-bit unsigned
0x68 Gain correction channel 4 16-bit unsigned
0x6A Temperature 16-bit unsigned * 0.01◦

Table A.2: DAC calibration data stored in EEPROM (calib file).

Appendix B: ADC Core Registers 28

Appendix B ADC Core Registers

The registers documentation have been generated using wbgen21.

B.1 Memory map summary

Address Type Prefix Name
0x0 REG ctl Control register
0x4 REG sta Status register
0x8 REG trig_cfg Trigger configuration
0xc REG trig_dly Trigger delay
0x10 REG sw_trig Software trigger
0x14 REG shots Number of shots
0x18 REG trig_pos Trigger address register
0x1c REG sr Sample rate
0x20 REG pre_

samples

Pre-trigger samples

0x24 REG post_

samples

Post-trigger samples

0x28 REG samples_

cnt

Samples counter

0x2c REG ch1_ctl Channel 1 control register
0x30 REG ch1_sta Channel 1 status register
0x34 REG ch1_gain Channel 1 gain calibration register
0x38 REG ch1_

offset

Channel 1 offset calibration register

0x3c REG ch2_ctl Channel 2 control register
0x40 REG ch2_sta Channel 2 status register
0x44 REG ch2_gain Channel 2 gain calibration register
0x48 REG ch2_

offset

Channel 2 offset calibration register

0x4c REG ch3_ctl Channel 3 control register
0x50 REG ch3_sta Channel 3 status register
0x54 REG ch3_gain Channel 3 gain calibration register
0x58 REG ch3_

offset

Channel 3 offset calibration register

0x5c REG ch4_ctl Channel 4 control register
0x60 REG ch4_sta Channel 4 status register
0x64 REG ch4_gain Channel 4 gain calibration register
0x68 REG ch4_

offset

Channel 4 offset calibration register

B.2 ctl - Control register

Bits Access Prefix Default Name
1...0 R/W FSM_CMD 0 State machine commands (ignore on read)
2 R/W FMC_CLK_

OE

0 FMC Si750 output enable

1 http://www.ohwr.org/projects/wishbone-gen

http://www.ohwr.org/projects/wishbone-gen

Appendix B: ADC Core Registers 29

3 R/W OFFSET_

DAC_CLR_N

0 Offset DACs clear (active low)

4 W/O MAN_

BITSLIP

0 Manual serdes bitslip (ignore on read)

5 R/W TEST_

DATA_EN

0 Enable test data

6 R/W TRIG_LED 0 Manual TRIG LED
7 R/W ACQ_LED 0 Manual ACQ LED
31...8 R/W RESERVED 0 Reserved

Field Description
fsm_cmd 1: ACQ START (start acquisition, only when FSM is idle)

2: ACQ STOP (stop acquisition, anytime)

test_data_

en

Write the address counter value instead of ADC data to DDR

trig_led Manual control of the front panel TRIG LED
acq_led Manual control of the front panel ACQ LED
reserved Ignore on read, write with 0’s

B.3 sta - Status register

Bits Access Prefix Default Name
2...0 R/O FSM X State machine status
3 R/O SERDES_

PLL

X SerDes PLL status

4 R/O SERDES_

SYNCED

X SerDes synchronization status

5 R/O ACQ_CFG X Acquisition configuration status
31...6 R/O RESERVED X Reserved

Field Description
fsm States:

0: illegal
1: IDLE
2: PRE TRIG
3: WAIT TRIG
4: POST TRIG
5: TRIG TAG
6: DECR SHOT
7: illegal

serdes_pll Sampling clock recovery PLL.
0: not locked
1: locked

serdes_

synced

0: bitslip in progress
1: serdes synchronized

acq_cfg 0: Unauthorised acquisition configuration (will prevent acquisition to start)
1: Valid acquisition configuration
• Shot number > 0
• Post-trigger sample > 0

reserved Ignore on read, write with 0’s

Appendix B: ADC Core Registers 30

B.4 trig_cfg - Trigger configuration

Bits Access Prefix Default Name
0 R/W HW_TRIG_

SEL

0 Hardware trigger selection

1 R/W HW_TRIG_

POL

0 Hardware trigger polarity

2 R/W HW_TRIG_

EN

0 Hardware trigger enable

3 R/W SW_TRIG_

EN

0 Software trigger enable

5...4 R/W INT_TRIG_

SEL

0 Channel selection for internal trigger

15...6 R/W RESERVED 0 Reserved
31...16 R/W INT_TRIG_

THRES

0 Threshold for internal trigger

Field Description
hw_trig_sel 0: internal (data threshold)

1: external (front panel trigger input)

hw_trig_pol 0: positive edge/slope
1: negative edge/slope

hw_trig_en 0: disable
1: enable

sw_trig_en 0: disable
1: enable

int_trig_

sel

00: channel 1
01: channel 2
10: channel 3
11: channel 4

reserved Ignore on read, write with 0’s
int_trig_

thres

Treated as binary two’s complement and compared to raw ADC data.

B.5 trig_dly - Trigger delay

Bits Access Prefix Default Name
31...0 R/W TRIG_DLY 0 Trigger delay value

Field Description
trig_dly Delay to apply on the trigger in sampling clock period.

The default clock frequency is 100MHz (period = 10ns).

B.6 sw_trig - Software trigger

Writing (anything) to this register generates a software trigger.

Bits Access Prefix Default Name
31...0 W/O SW_TRIG 0 Software trigger (ignore on read)

Appendix B: ADC Core Registers 31

B.7 shots - Number of shots

Bits Access Prefix Default Name
15...0 R/W NB 0 Number of shots
31...16 R/W RESERVED 0 Reserved

Field Description
nb Number of shots required in multi-shot mode, set to one for single-shot mode.
reserved Ignore on read, write with 0’s

B.8 trig_pos - Trigger address register

Bits Access Prefix Default Name
31...0 R/O TRIG_POS X Trigger address

Field Description
trig_pos Trigger address in DDR memory.

Only used in single-shot mode.

B.9 sr - Sample rate

Bits Access Prefix Default Name
31...0 R/W DECI 0 Sample rate decimation

Field Description
deci Decimation factor. Takes one sample every N samples and discards the others

(N = decimation factor).

B.10 pre_samples - Pre-trigger samples

Bits Access Prefix Default Name
31...0 R/W PRE_

SAMPLES

0 Pre-trigger samples

Field Description
pre_samples Number of requested pre-trigger samples (>1).

B.11 post_samples - Post-trigger samples

Bits Access Prefix Default Name
31...0 R/W POST_

SAMPLES

0 Post-trigger samples

Field Description
post_

samples

Number of requested post-trigger samples (>1).

Appendix B: ADC Core Registers 32

B.12 samples_cnt - Samples counter

Bits Access Prefix Default Name
31...0 R/O SAMPLES_

CNT

X Samples counter

Field Description
samples_cnt Counts the number of samples.

It is reset on START and then counts the number of pre-trigger + post-trigger
samples

B.13 ch1_ctl - Channel 1 control register

Bits Access Prefix Default Name
6...0 R/W SSR 0 Solid state relays control for channel 1
31...7 R/W RESERVED 0 Reserved

Field Description
ssr Controls input voltage range, termination and DC offset error calibration

0x23: 100mV range
0x11: 1V range
0x45: 10V range
0x00: Open input
0x42: 100mV range calibration
0x40: 1V range calibration
0x44: 10V range calibration
Bit3 is indepandant of the others and enables the 50ohms termination.

reserved Ignore on read, write with 0’s

B.14 ch1_sta - Channel 1 status register

Bits Access Prefix Default Name
15...0 R/O VAL X Channel 1 current ADC value
31...16 R/O RESERVED X Reserved

Field Description
val Current ADC raw value. The format is binary two’s complement.
reserved Ignore on read, write with 0’s

B.15 ch1_gain - Channel 1 gain calibration register

Bits Access Prefix Default Name
15...0 R/W VAL 0 Gain calibration for channel 1
31...16 R/W RESERVED 0 Reserved

Field Description

Appendix B: ADC Core Registers 33

val Gain applied to all data coming from the ADC.
Fixed point format:
Bit 15 = 2^0, bit 14 = 2^(-1), bit 13 = 2^(-2), ... , bit 1 = 2^(-14), bit 0 =
2^(-15)

reserved Ignore on read, write with 0’s

B.16 ch1_offset - Channel 1 offset calibration register

Bits Access Prefix Default Name
15...0 R/W VAL 0 Offset calibration for channel 1
31...16 R/W RESERVED 0 Reserved

Field Description
val Offset applied to all data coming from the ADC. The format is binary two’s

complement.

reserved Ignore on read, write with 0’s

B.17 ch2_ctl - Channel 2 control register

Bits Access Prefix Default Name
6...0 R/W SSR 0 Solid state relays control for channel 2
31...7 R/W RESERVED 0 Reserved

Field Description
ssr Controls input voltage range, termination and DC offset error calibration

0x23: 100mV range
0x11: 1V range
0x45: 10V range
0x00: Open input
0x42: 100mV range calibration
0x40: 1V range calibration
0x44: 10V range calibration
Bit3 is indepandant of the others and enables the 50ohms termination.

reserved Ignore on read, write with 0’s

B.18 ch2_sta - Channel 2 status register

Bits Access Prefix Default Name
15...0 R/O VAL X Channel 2 current ACD value
31...16 R/O RESERVED X Reserved

Field Description
val Current ADC raw value. The format is binary two’s complement.
reserved Ignore on read, write with 0’s

B.19 ch2_gain - Channel 2 gain calibration register

Bits Access Prefix Default Name
15...0 R/W VAL 0 Gain calibration for channel 2

Appendix B: ADC Core Registers 34

31...16 R/W RESERVED 0 Reserved

Field Description
val Gain applied to all data coming from the ADC.

Fixed point format:
Bit 15 = 2^0, bit 14 = 2^(-1), bit 13 = 2^(-2), ... , bit 1 = 2^(-14), bit 0 =
2^(-15)

reserved Ignore on read, write with 0’s

B.20 ch2_offset - Channel 2 offset calibration register

Bits Access Prefix Default Name
15...0 R/W VAL 0 Offset calibration for channel 2
31...16 R/W RESERVED 0 Reserved

Field Description
val Offset applied to all data coming from the ADC. The format is binary two’s

complement.

reserved Ignore on read, write with 0’s

B.21 ch3_ctl - Channel 3 control register

Bits Access Prefix Default Name
6...0 R/W SSR 0 Solid state relays control for channel 3
31...7 R/W RESERVED 0 Reserved

Field Description
ssr Controls input voltage range, termination and DC offset error calibration

0x23: 100mV range
0x11: 1V range
0x45: 10V range
0x00: Open input
0x42: 100mV range calibration
0x40: 1V range calibration
0x44: 10V range calibration
Bit3 is indepandant of the others and enables the 50ohms termination.

reserved Ignore on read, write with 0’s

B.22 ch3_sta - Channel 3 status register

Bits Access Prefix Default Name
15...0 R/O VAL X Channel 3 current ADC value
31...16 R/O RESERVED X Reserved

Field Description
val Current ADC raw value. The format is binary two’s complement.
reserved Ignore on read, write with 0’s

Appendix B: ADC Core Registers 35

B.23 ch3_gain - Channel 3 gain calibration register

Bits Access Prefix Default Name
15...0 R/W VAL 0 Gain calibration for channel 3
31...16 R/W RESERVED 0 Reserved

Field Description
val Gain applied to all data coming from the ADC.

Fixed point format:
Bit 15 = 2^0, bit 14 = 2^(-1), bit 13 = 2^(-2), ... , bit 1 = 2^(-14), bit 0 =
2^(-15)

reserved Ignore on read, write with 0’s

B.24 ch3_offset - Channel 3 offset calibration register

Bits Access Prefix Default Name
15...0 R/W VAL 0 Offset calibration for channel 3
31...16 R/W RESERVED 0 Reserved

Field Description
val Offset applied to all data coming from the ADC. The format is binary two’s

complement.

reserved Ignore on read, write with 0’s

B.25 ch4_ctl - Channel 4 control register

Bits Access Prefix Default Name
6...0 R/W SSR 0 Solid state relays control for channel 4
31...7 R/W RESERVED 0 Reserved

Field Description
ssr Controls input voltage range, termination and DC offset error calibration

0x23: 100mV range
0x11: 1V range
0x45: 10V range
0x00: Open input
0x42: 100mV range calibration
0x40: 1V range calibration
0x44: 10V range calibration
Bit3 is indepandant of the others and enables the 50ohms termination.

reserved Ignore on read, write with 0’s

B.26 ch4_sta - Channel 4 status register

Bits Access Prefix Default Name
15...0 R/O VAL X Channel 4 current ADC value
31...16 R/O RESERVED X Reserved

Field Description

Appendix B: ADC Core Registers 36

val Current ADC raw value. The format is binary two’s complement.
reserved Ignore on read, write with 0’s

B.27 ch4_gain - Channel 4 gain calibration register

Bits Access Prefix Default Name
15...0 R/W VAL 0 Gain calibration for channel 4
31...16 R/W RESERVED 0 Reserved

Field Description
val Gain applied to all data coming from the ADC.

Fixed point format:
Bit 15 = 2^0, bit 14 = 2^(-1), bit 13 = 2^(-2), ... , bit 1 = 2^(-14), bit 0 =
2^(-15)

reserved Ignore on read, write with 0’s

B.28 ch4_offset - Channel 4 offset calibration register

Bits Access Prefix Default Name
15...0 R/W VAL 0 Offset calibration for channel 4
31...16 R/W RESERVED 0 Reserved

Field Description
val Offset applied to all data coming from the ADC. The format is binary two’s

complement.

reserved Ignore on read, write with 0’s

Appendix C: FMC-ADC Embedded Interrupt Controller Registers 37

Appendix C FMC-ADC Embedded Interrupt
Controller Registers

The registers documentation have been generated using wbgen21.

C.1 Memory map summary

Address Type Prefix Name
0x0 REG EIC_IDR Interrupt disable register
0x4 REG EIC_IER Interrupt enable register
0x8 REG EIC_IMR Interrupt mask register
0xc REG EIC_ISR Interrupt status register

C.2 EIC_IDR - Interrupt disable register

Writing 1 disables handling of the interrupt associated with corresponding bit. Writin 0 has no
effect.

Bits Access Prefix Default Name
0 W/O TRIG 0 Trigger interrupt
1 W/O ACQ_END 0 End of acquisition interrupt

Field Description
trig write 1: disable interrupt ’Trigger interrupt’

write 0: no effect

acq_end write 1: disable interrupt ’End of acquisition interrupt’
write 0: no effect

C.3 EIC_IER - Interrupt enable register

Writing 1 enables handling of the interrupt associated with corresponding bit. Writin 0 has no
effect.

Bits Access Prefix Default Name
0 W/O TRIG 0 Trigger interrupt
1 W/O ACQ_END 0 End of acquisition interrupt

Field Description
trig write 1: enable interrupt ’Trigger interrupt’

write 0: no effect

acq_end write 1: enable interrupt ’End of acquisition interrupt’
write 0: no effect

C.4 EIC_IMR - Interrupt mask register

Shows which interrupts are enabled. 1 means that the interrupt associated with the bitfield is
enabled

Bits Access Prefix Default Name
0 R/O TRIG X Trigger interrupt

1 http://www.ohwr.org/projects/wishbone-gen

http://www.ohwr.org/projects/wishbone-gen

Appendix C: FMC-ADC Embedded Interrupt Controller Registers 38

1 R/O ACQ_END X End of acquisition interrupt

Field Description
trig read 1: interrupt ’Trigger interrupt’ is enabled

read 0: interrupt ’Trigger interrupt’ is disabled

acq_end read 1: interrupt ’End of acquisition interrupt’ is enabled
read 0: interrupt ’End of acquisition interrupt’ is disabled

C.5 EIC_ISR - Interrupt status register

Each bit represents the state of corresponding interrupt. 1 means the interrupt is pending.
Writing 1 to a bit clears the corresponding interrupt. Writing 0 has no effect.

Bits Access Prefix Default Name
0 R/W TRIG X Trigger interrupt
1 R/W ACQ_END X End of acquisition interrupt

Field Description
trig read 1: interrupt ’Trigger interrupt’ is pending

read 0: interrupt not pending
write 1: clear interrupt ’Trigger interrupt’
write 0: no effect

acq_end read 1: interrupt ’End of acquisition interrupt’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’End of acquisition interrupt’
write 0: no effect

Appendix D: DMA Embedded Interrupt Controller Registers 39

Appendix D DMA Embedded Interrupt Controller
Registers

The registers documentation have been generated using wbgen21.

D.1 Memory map summary

Address Type Prefix Name
0x0 REG EIC_IDR Interrupt disable register
0x4 REG EIC_IER Interrupt enable register
0x8 REG EIC_IMR Interrupt mask register
0xc REG EIC_ISR Interrupt status register

D.2 EIC_IDR - Interrupt disable register

Writing 1 disables handling of the interrupt associated with corresponding bit. Writin 0 has no
effect.

Bits Access Prefix Default Name
0 W/O DMA_DONE 0 DMA done interrupt
1 W/O DMA_ERROR 0 DMA error interrupt

Field Description
dma_done write 1: disable interrupt ’DMA done interrupt’

write 0: no effect

dma_error write 1: disable interrupt ’DMA error interrupt’
write 0: no effect

D.3 EIC_IER - Interrupt enable register

Writing 1 enables handling of the interrupt associated with corresponding bit. Writin 0 has no
effect.

Bits Access Prefix Default Name
0 W/O DMA_DONE 0 DMA done interrupt
1 W/O DMA_ERROR 0 DMA error interrupt

Field Description
dma_done write 1: enable interrupt ’DMA done interrupt’

write 0: no effect

dma_error write 1: enable interrupt ’DMA error interrupt’
write 0: no effect

D.4 EIC_IMR - Interrupt mask register

Shows which interrupts are enabled. 1 means that the interrupt associated with the bitfield is
enabled

Bits Access Prefix Default Name
0 R/O DMA_DONE X DMA done interrupt

1 http://www.ohwr.org/projects/wishbone-gen

http://www.ohwr.org/projects/wishbone-gen

Appendix D: DMA Embedded Interrupt Controller Registers 40

1 R/O DMA_ERROR X DMA error interrupt

Field Description
dma_done read 1: interrupt ’DMA done interrupt’ is enabled

read 0: interrupt ’DMA done interrupt’ is disabled

dma_error read 1: interrupt ’DMA error interrupt’ is enabled
read 0: interrupt ’DMA error interrupt’ is disabled

D.5 EIC_ISR - Interrupt status register

Each bit represents the state of corresponding interrupt. 1 means the interrupt is pending.
Writing 1 to a bit clears the corresponding interrupt. Writing 0 has no effect.

Bits Access Prefix Default Name
0 R/W DMA_DONE X DMA done interrupt
1 R/W DMA_ERROR X DMA error interrupt

Field Description
dma_done read 1: interrupt ’DMA done interrupt’ is pending

read 0: interrupt not pending
write 1: clear interrupt ’DMA done interrupt’
write 0: no effect

dma_error read 1: interrupt ’DMA error interrupt’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’DMA error interrupt’
write 0: no effect

Appendix E: Vectored Interrupt Controller 41

Appendix E Vectored Interrupt Controller

The registers documentation have been generated using wbgen21.

E.1 Memory map summary

Address Type Prefix Name
0x0 REG CTL VIC Control Register
0x4 REG RISR Raw Interrupt Status Register
0x8 REG IER Interrupt Enable Register
0xc REG IDR Interrupt Disable Register
0x10 REG IMR Interrupt Mask Register
0x14 REG VAR Vector Address Register
0x18 REG SWIR Software Interrupt Register
0x1c REG EOIR End Of Interrupt Acknowledge Register
0x20 -

0x3f

MEM IVT_RAM Interrupt Vector Table

E.2 CTL - VIC Control Register

Bits Access Prefix Default Name
0 R/W ENABLE 0 VIC Enable
1 R/W POL 0 VIC output polarity
2 R/W EMU_EDGE 0 Emulate Edge sensitive output
18...3 R/W EMU_LEN 0 Emulated Edge pulse timer

Field Description
ENABLE • 1: enables VIC operation

• 0: disables VIC operation

POL • 1: IRQ output is active high
• 0: IRQ output is active low

EMU_EDGE • 1: Forces a low pulse of EMU_LEN clock cycles at each write to EOIR. Useful
for edge-only IRQ controllers such as Gennum.
• 0: Normal IRQ master line behavior

EMU_LEN Length of the delay (in clk_sys_i cycles) between write to EOIR and re-
assertion of irq_master_o.

E.3 RISR - Raw Interrupt Status Register

Bits Access Prefix Default Name
31...0 R/O RISR X Raw interrupt status

Field Description
RISR Each bit reflects the current state of corresponding IRQ input line.

• read 1: interrupt line is currently active
• read 0: interrupt line is inactive

1 http://www.ohwr.org/projects/wishbone-gen

http://www.ohwr.org/projects/wishbone-gen

Appendix E: Vectored Interrupt Controller 42

E.4 IER - Interrupt Enable Register

Bits Access Prefix Default Name
31...0 W/O IER 0 Enable IRQ

Field Description
IER • write 1: enables interrupt associated with written bit

• write 0: no effect

E.5 IDR - Interrupt Disable Register

Bits Access Prefix Default Name
31...0 W/O IDR 0 Disable IRQ

Field Description
IDR • write 1: enables interrupt associated with written bit

• write 0: no effect

E.6 IMR - Interrupt Mask Register

Bits Access Prefix Default Name
31...0 R/O IMR X IRQ disabled/enabled

Field Description
IMR • read 1: interrupt associated with read bit is enabled

• read 0: interrupt is disabled

E.7 VAR - Vector Address Register

Bits Access Prefix Default Name
31...0 R/O VAR X Vector Address

Field Description
VAR Address of pending interrupt vector, read from Interrupt Vector Table

E.8 SWIR - Software Interrupt Register

Writing 1 to one of bits of this register causes a software emulation of the respective interrupt.

Bits Access Prefix Default Name
31...0 W/O SWIR 0 SWI interrupt mask

E.9 EOIR - End Of Interrupt Acknowledge Register

Bits Access Prefix Default Name
31...0 W/O EOIR 0 End of Interrupt

Field Description

Appendix E: Vectored Interrupt Controller 43

EOIR Any write operation acknowledges the pending interrupt. Then, VIC advances
to another pending interrupt(s) or releases the master interrupt output.

Appendix F: Time-tagging Core Registers 44

Appendix F Time-tagging Core Registers

The registers documentation have been generated using wbgen21.

F.1 Memory map summary

Address Type Prefix Name
0x0 REG seconds Timetag seconds register
0x4 REG coarse Timetag coarse time register, system clock ticks

(125MHz)

0x8 REG trig_tag_

meta

Trigger time-tag metadata register

0xc REG trig_tag_

seconds

Trigger time-tag seconds register

0x10 REG trig_tag_

coarse

Trigger time-tag coarse time (system clock ticks
125MHz) register

0x14 REG trig_tag_

fine

Trigger time-tag fine time register, always 0 (used
for time-tag format compatibility)

0x18 REG acq_

start_

tag_meta

Acquisition start time-tag metadata register

0x1c REG acq_

start_

tag_

seconds

Acquisition start time-tag seconds register

0x20 REG acq_

start_

tag_

coarse

Acquisition start time-tag coarse time (system
clock ticks 125MHz) register

0x24 REG acq_

start_

tag_fine

Acquisition start time-tag fine time register, al-
ways 0 (used for time-tag format compatibility)

0x28 REG acq_stop_

tag_meta

Acquisition stop time-tag metadata register

0x2c REG acq_stop_

tag_

seconds

Acquisition stop time-tag seconds register

0x30 REG acq_stop_

tag_

coarse

Acquisition stop time-tag coarse time (system
clock ticks 125MHz) register

0x34 REG acq_stop_

tag_fine

Acquisition stop time-tag fine time register, always
0 (used for time-tag format compatibility)

0x38 REG acq_end_

tag_meta

Acquisition end time-tag metadata register

0x3c REG acq_end_

tag_

seconds

Acquisition end time-tag seconds register

1 http://www.ohwr.org/projects/wishbone-gen

http://www.ohwr.org/projects/wishbone-gen

Appendix F: Time-tagging Core Registers 45

0x40 REG acq_end_

tag_

coarse

Acquisition end time-tag coarse time (system clock
ticks 125MHz) register

0x44 REG acq_end_

tag_fine

Acquisition end time-tag fine time register, always
0 (used for time-tag format compatibility)

F.2 seconds - Timetag seconds register

Seconds counter. Incremented everytime the coarse counter overflows.

Bits Access Prefix Default Name
31...0 R/W SECONDS X Timetag seconds

Field Description

F.3 coarse - Timetag coarse time register, system clock ticks
(125MHz)

Coarse time counter clocked by 125MHz system clock. Counts from 0 to 125000000.

Bits Access Prefix Default Name
31...0 R/W COARSE X Timetag coarse time

Field Description

F.4 trig_tag_meta - Trigger time-tag metadata register

Bits Access Prefix Default Name
31...0 R/O TRIG_TAG_

META

X Trigger time-tag metadata

Field Description
trig_tag_

meta

Holds time-tag metadata of the last trigger event

F.5 trig_tag_seconds - Trigger time-tag seconds register

Bits Access Prefix Default Name
31...0 R/O TRIG_TAG_

SECONDS

X Trigger time-tag seconds

Field Description
trig_tag_

seconds

Holds time-tag seconds of the last trigger event

F.6 trig_tag_coarse - Trigger time-tag coarse time (system
clock ticks 125MHz) register

Bits Access Prefix Default Name

Appendix F: Time-tagging Core Registers 46

31...0 R/O TRIG_TAG_

COARSE

X Trigger time-tag coarse time

Field Description
trig_tag_

coarse

Holds time-tag coarse time of the last trigger event

F.7 trig_tag_fine - Trigger time-tag fine time register, always
0 (used for time-tag format compatibility)

Bits Access Prefix Default Name
31...0 R/O TRIG_TAG_

FINE

X Trigger time-tag fine time

Field Description
trig_tag_

fine

Holds time-tag fine time of the last trigger event

F.8 acq_start_tag_meta - Acquisition start time-tag metadata
register

Bits Access Prefix Default Name
31...0 R/O ACQ_

START_

TAG_META

X Acquisition start time-tag metadata

Field Description
acq_start_

tag_meta

Holds time-tag metadata of the last acquisition start event

F.9 acq_start_tag_seconds - Acquisition start time-tag seconds
register

Bits Access Prefix Default Name
31...0 R/O ACQ_

START_

TAG_

SECONDS

X Acquisition start time-tag seconds

Field Description
acq_start_

tag_seconds

Holds time-tag seconds of the last acquisition start event

F.10 acq_start_tag_coarse - Acquisition start time-tag coarse
time (system clock ticks 125MHz) register

Bits Access Prefix Default Name

Appendix F: Time-tagging Core Registers 47

31...0 R/O ACQ_

START_

TAG_

COARSE

X Acquisition start time-tag coarse time

Field Description
acq_start_

tag_coarse

Holds time-tag coarse time of the last acquisition start event

F.11 acq_start_tag_fine - Acquisition start time-tag fine time
register, always 0 (used for time-tag format compatibility)

Bits Access Prefix Default Name
31...0 R/O ACQ_

START_

TAG_FINE

X Acquisition start time-tag fine time

Field Description
acq_start_

tag_fine

Holds time-tag fine time of the last acquisition start event

F.12 acq_stop_tag_meta - Acquisition stop time-tag metadata
register

Bits Access Prefix Default Name
31...0 R/O ACQ_STOP_

TAG_META

X Acquisition stop time-tag metadata

Field Description
acq_stop_

tag_meta

Holds time-tag metadata of the last acquisition stop event

F.13 acq_stop_tag_seconds - Acquisition stop time-tag seconds
register

Bits Access Prefix Default Name
31...0 R/O ACQ_STOP_

TAG_

SECONDS

X Acquisition stop time-tag seconds

Field Description
acq_stop_

tag_seconds

Holds time-tag seconds of the last acquisition stop event

F.14 acq_stop_tag_coarse - Acquisition stop time-tag coarse
time (system clock ticks 125MHz) register

Bits Access Prefix Default Name

Appendix F: Time-tagging Core Registers 48

31...0 R/O ACQ_STOP_

TAG_

COARSE

X Acquisition stop time-tag coarse time

Field Description
acq_stop_

tag_coarse

Holds time-tag coarse time of the last acquisition stop event

F.15 acq_stop_tag_fine - Acquisition stop time-tag fine time
register, always 0 (used for time-tag format compatibility)

Bits Access Prefix Default Name
31...0 R/O ACQ_STOP_

TAG_FINE

X Acquisition stop time-tag fine time

Field Description
acq_stop_

tag_fine

Holds time-tag fine time of the last acquisition stop event

F.16 acq_end_tag_meta - Acquisition end time-tag metadata
register

Bits Access Prefix Default Name
31...0 R/O ACQ_END_

TAG_META

X Acquisition end time-tag metadata

Field Description
acq_end_

tag_meta

Holds time-tag metadata of the last acquisition end event

F.17 acq_end_tag_seconds - Acquisition end time-tag seconds
register

Bits Access Prefix Default Name
31...0 R/O ACQ_END_

TAG_

SECONDS

X Acquisition end time-tag seconds

Field Description
acq_end_

tag_seconds

Holds time-tag seconds of the last acquisition end event

F.18 acq_end_tag_coarse - Acquisition end time-tag coarse time
(system clock ticks 125MHz) register

Bits Access Prefix Default Name

Appendix F: Time-tagging Core Registers 49

31...0 R/O ACQ_END_

TAG_

COARSE

X Acquisition end time-tag coarse time

Field Description
acq_end_

tag_coarse

Holds time-tag coarse time of the last acquisition end event

F.19 acq_end_tag_fine - Acquisition end time-tag fine time
register, always 0 (used for time-tag format compatibility)

Bits Access Prefix Default Name
31...0 R/O ACQ_END_

TAG_FINE

X Acquisition end time-tag fine time

Field Description
acq_end_

tag_fine

Holds time-tag fine time of the last acquisition end event

Appendix G: SPEC Carrier Registers 50

Appendix G SPEC Carrier Registers

The registers documentation have been generated using wbgen21.

G.1 Memory map summary

Address Type Prefix Name
0x0 REG carrier Carrier type and PCB version
0x4 REG stat Status
0x8 REG ctrl Control
0xc REG rst Reset Register

G.2 carrier - Carrier type and PCB version

Bits Access Prefix Default Name
3...0 R/O PCB_REV X PCB revision
15...4 R/O RESERVED X Reserved register
31...16 R/O TYPE X Carrier type

Field Description
pcb_rev Binary coded PCB layout revision.
reserved Ignore on read, write with 0’s.
type Carrier type identifier

1 = SPEC
2 = SVEC
3 = VFC
4 = SPEXI

G.3 stat - Status

Bits Access Prefix Default Name
0 R/O FMC_PRES X FMC presence
1 R/O P2L_PLL_

LCK

X GN4142 core P2L PLL status

2 R/O SYS_PLL_

LCK

X System clock PLL status

3 R/O DDR3_CAL_

DONE

X DDR3 calibration status

31...4 R/O RESERVED X Reserved

Field Description
fmc_pres 0: FMC slot is populated

1: FMC slot is not populated.

p2l_pll_lck 0: not locked
1: locked.

sys_pll_lck 0: not locked
1: locked.

1 http://www.ohwr.org/projects/wishbone-gen

http://www.ohwr.org/projects/wishbone-gen

Appendix G: SPEC Carrier Registers 51

ddr3_cal_

done

0: not done
1: done.

reserved Ignore on read, write with 0’s.

G.4 ctrl - Control

Bits Access Prefix Default Name
0 R/W LED_GREEN 0 Green LED
1 R/W LED_RED 0 Red LED
2 R/W DAC_CLR_N 0 DAC clear
31...3 R/W RESERVED 0 Reserved

Field Description
led_green Manual control of the front panel green LED (unused in the fmc-adc

application)

led_red Manual control of the front panel red LED (unused in the fmc-adc application)
dac_clr_n Active low clear signal for VCXO DACs
reserved Ignore on read, write with 0’s

G.5 rst - Reset Register

Controls software reset of the mezzanine including the ddr interface and the time-tagging core.

Bits Access Prefix Default Name
0 R/W FMC0_N X State of the reset line
31...1 R/W RESERVED 0 Reserved

Field Description
fmc0_n write 0: FMC is held in reset

write 1: Normal FMC operation (default)

reserved Ignore on read, write with 0’s

Appendix H: SVEC Carrier Registers 52

Appendix H SVEC Carrier Registers

The registers documentation have been generated using wbgen21.

H.1 Memory map summary

Address Type Prefix Name
0x0 REG carrier Carrier type and PCB version
0x4 REG stat Status
0x8 REG ctrl Control
0xc REG rst Reset Register

H.2 carrier - Carrier type and PCB version

Bits Access Prefix Default Name
4...0 R/O PCB_REV X PCB revision
15...5 R/O RESERVED X Reserved register
31...16 R/O TYPE X Carrier type

Field Description
pcb_rev Binary coded PCB layout revision.
reserved Ignore on read, write with 0’s.
type Carrier type identifier

1 = SPEC
2 = SVEC
3 = VFC
4 = SPEXI

H.3 stat - Status

Bits Access Prefix Default Name
0 R/O FMC0_PRES X FMC 1 presence
1 R/O FMC1_PRES X FMC 2 presence
2 R/O SYS_PLL_

LCK

X System clock PLL status

3 R/O DDR0_CAL_

DONE

X DDR3 bank 4 calibration status

4 R/O DDR1_CAL_

DONE

X DDR3 bank 5 calibration status

31...5 R/O RESERVED X Reserved

Field Description
fmc0_pres 0: FMC slot 1 is populated

1: FMC slot 1 is not populated.

fmc1_pres 0: FMC slot 2 is populated
1: FMC slot 2 is not populated.

sys_pll_lck 0: not locked
1: locked.

1 http://www.ohwr.org/projects/wishbone-gen

http://www.ohwr.org/projects/wishbone-gen

Appendix H: SVEC Carrier Registers 53

ddr0_cal_

done

0: not done
1: done.

ddr1_cal_

done

0: not done
1: done.

reserved Ignore on read, write with 0’s.

H.4 ctrl - Control

Bits Access Prefix Default Name
15...0 R/W FP_LEDS_

MAN

0 Front panel LED manual control

31...16 R/W RESERVED 0 Reserved

Field Description
fp_leds_man Height front panel LED, two bits per LED.

00 = OFF
01 = Green
10 = Red
11 = Orange

reserved Ignore on read, write with 0’s

H.5 rst - Reset Register

Controls software reset of the mezzanines including the ddr interface and the time-tagging core.

Bits Access Prefix Default Name
0 R/W FMC0_N X State of the FMC 1 reset line
1 R/W FMC1_N X State of the FMC 2 reset line
31...2 R/W RESERVED 0 Reserved

Field Description
fmc0_n write 0: FMC is held in reset

write 1: Normal FMC operation (default)

fmc1_n write 0: FMC is held in reset
write 1: Normal FMC operation (default)

reserved Ignore on read, write with 0’s

Appendix I: Glossary 54

Appendix I Glossary

I.1 Glossary

Local bus The local bus is the interface between the GN4124 and the FPGA.

Pulse In this document, a pulse refers to a one clock tick wide pulse.

Tick A clock tick corresponds to a period of the clock.

SDB Self-Describing Bus

VIC Vectored Interrupt Controller

EIC Embedded Interrupt Controller

	Introduction
	Repositories and Releases
	Software Support

	About Source Code
	Build from Sources
	Source Code Organisation
	Dependencies

	Architecture
	SPEC (PCIe carrier)
	Clock Domains
	GN4124 Core
	DMA Embedded Interrupt Controller (EIC)
	SPEC Carrier Control and Status Registers

	SVEC (VME64x carrier)
	Clock Domains
	VME64x Core
	SVEC Carrier Control and Status
	SVEC Carrier I2C Master

	Common Cores
	Carrier 1-wire Master
	DDR Memory Controller
	Vectored Interrupt Controller (VIC)

	FMC-ADC Core
	Sampling clock
	Time-tagging Core
	FMC-ADC Control and Status Registers
	Mezzanine SPI Master
	Mezzanine 1-wire Master
	Mezzanine I2C Master
	Mezzanine System Management I2C Master
	FMC-ADC Embedded Interrupt Controller (EIC)

	Configuration
	Control and Status Registers
	Input Ranges
	Input Offset
	Trigger
	Undersampling

	Calibration
	Calibration data storage
	Calibration Data Usage
	ADC Calibration
	DAC Calibration

	Acquisition
	Single-shot Mode
	Multi-shot Mode

	Missing Features and Improvements
	To be done before next release
	For a later release

	
	Calibration Data Storage in EEPROM

	ADC Core Registers
	Memory map summary
	ctl - Control register
	sta - Status register
	trig_cfg - Trigger configuration
	trig_dly - Trigger delay
	sw_trig - Software trigger
	shots - Number of shots
	trig_pos - Trigger address register
	sr - Sample rate
	pre_samples - Pre-trigger samples
	post_samples - Post-trigger samples
	samples_cnt - Samples counter
	ch1_ctl - Channel 1 control register
	ch1_sta - Channel 1 status register
	ch1_gain - Channel 1 gain calibration register
	ch1_offset - Channel 1 offset calibration register
	ch2_ctl - Channel 2 control register
	ch2_sta - Channel 2 status register
	ch2_gain - Channel 2 gain calibration register
	ch2_offset - Channel 2 offset calibration register
	ch3_ctl - Channel 3 control register
	ch3_sta - Channel 3 status register
	ch3_gain - Channel 3 gain calibration register
	ch3_offset - Channel 3 offset calibration register
	ch4_ctl - Channel 4 control register
	ch4_sta - Channel 4 status register
	ch4_gain - Channel 4 gain calibration register
	ch4_offset - Channel 4 offset calibration register

	FMC-ADC Embedded Interrupt Controller Registers
	Memory map summary
	EIC_IDR - Interrupt disable register
	EIC_IER - Interrupt enable register
	EIC_IMR - Interrupt mask register
	EIC_ISR - Interrupt status register

	DMA Embedded Interrupt Controller Registers
	Memory map summary
	EIC_IDR - Interrupt disable register
	EIC_IER - Interrupt enable register
	EIC_IMR - Interrupt mask register
	EIC_ISR - Interrupt status register

	Vectored Interrupt Controller
	Memory map summary
	CTL - VIC Control Register
	RISR - Raw Interrupt Status Register
	IER - Interrupt Enable Register
	IDR - Interrupt Disable Register
	IMR - Interrupt Mask Register
	VAR - Vector Address Register
	SWIR - Software Interrupt Register
	EOIR - End Of Interrupt Acknowledge Register

	Time-tagging Core Registers
	Memory map summary
	seconds - Timetag seconds register
	coarse - Timetag coarse time register, system clock ticks (125MHz)
	trig_tag_meta - Trigger time-tag metadata register
	trig_tag_seconds - Trigger time-tag seconds register
	trig_tag_coarse - Trigger time-tag coarse time (system clock ticks 125MHz) register
	trig_tag_fine - Trigger time-tag fine time register, always 0 (used for time-tag format compatibility)
	acq_start_tag_meta - Acquisition start time-tag metadata register
	acq_start_tag_seconds - Acquisition start time-tag seconds register
	acq_start_tag_coarse - Acquisition start time-tag coarse time (system clock ticks 125MHz) register
	acq_start_tag_fine - Acquisition start time-tag fine time register, always 0 (used for time-tag format compatibility)
	acq_stop_tag_meta - Acquisition stop time-tag metadata register
	acq_stop_tag_seconds - Acquisition stop time-tag seconds register
	acq_stop_tag_coarse - Acquisition stop time-tag coarse time (system clock ticks 125MHz) register
	acq_stop_tag_fine - Acquisition stop time-tag fine time register, always 0 (used for time-tag format compatibility)
	acq_end_tag_meta - Acquisition end time-tag metadata register
	acq_end_tag_seconds - Acquisition end time-tag seconds register
	acq_end_tag_coarse - Acquisition end time-tag coarse time (system clock ticks 125MHz) register
	acq_end_tag_fine - Acquisition end time-tag fine time register, always 0 (used for time-tag format compatibility)

	SPEC Carrier Registers
	Memory map summary
	carrier - Carrier type and PCB version
	stat - Status
	ctrl - Control
	rst - Reset Register

	SVEC Carrier Registers
	Memory map summary
	carrier - Carrier type and PCB version
	stat - Status
	ctrl - Control
	rst - Reset Register

	Glossary
	Glossary

