
FMC ADC User’s Manual
September 2014 (fmc-adc-100m-sw-2014-05-44-g91e47c2-dirty)

FMC ADC 100M 14b 4ch – software manual

CERN BE-CO-HT / Federico Vaga / Alessandro Rubini

i

Table of Contents

Introduction . 1

1 Bugs and Missing Features . 1

2 Repositories and Releases . 1
2.1 Use of Names in the Package . 2
2.2 Names in the Repository . 2

3 Driver Features . 2

4 Installation . 3
4.1 Gateware Dependencies . 3
4.2 Gateware Installation . 3
4.3 Software Dependencies . 3
4.4 Software Installation . 3
4.5 Module Parameters . 4

5 About Source Code . 5
5.1 Source Code Organization . 5
5.2 Source Code Conventions . 5

6 Device Configuration . 5
6.1 The Overall Device . 5
6.2 The Channel Set . 6

6.2.1 Channel-specific Cset Attributes . 7
6.2.2 Generic Cset Attributes . 7
6.2.3 Timestamp Cset Attributes . 8

6.3 The Channels . 8

7 The Trigger . 9

8 The Buffer . 10

9 Summary of Attributes . 11

10 Reading Data with Char Devices . 12

11 Tools . 13
11.1 Trigger Configuration . 13
11.2 Gain Configuration . 13
11.3 Acquisition Time . 14
11.4 Parallel Port Burst . 14

ii

12 The ADC Library . 14

13 Library-based Tools . 15
13.0.1 Simple Acquisition . 15
13.0.2 Test Program . 17
13.0.3 Retrieve Configuration . 17

14 Troubleshooting . 17
14.1 ZIO Doesn’t Compile . 18
14.2 make modules install misbehaves . 18

Chapter 2: Repositories and Releases 1

Introduction

This is the user manual of the driver for the FMC ADC 100M 14b 4cha board developed on
the Open Hardware Repository1. FMC is the form factor of the card, ADC is its role, 100M
means it can acquire 100Msample per second, 14b is the numbers of meaningful bits and 4cha
states it has 4 input channels (plus a trigger input).

If you want to start acquiring straight off, we suggest running fald-simple-ack, described in
Chapter 13 [Simple Acquisition], page 15.

1 Bugs and Missing Features

To set the record straight, we’d better list the known issues right off at the start. Release 1.1
will follow shortly (summer 2013), dealing with most of these details. Meanwhile, the package
(hardware, gateware, software) is rock solid, so we release it despite this list of known deficiencies:

• The driver doesn’t check acquisition size overflows (the code is almost there but it is not
triggering). Each shot in multi-shot is limited to 2048 samples, and a single-show acquisition
is limited to 32M samples.

• Some attributes should probably be renamed, to use human-readable names and numbers,
instead of exposing hardware-internal values. This applies to vref/range mainly.

• Software trigger (e.g. ZIO timer trigger) works properly, but the sequence number of blocks
is incrementing by 2 at each block. This must be fixed in this driver, that increments the
sequence number at the wrong place.

• Timestamps generated by the hardware are not configured nor properly used.

• Some error messages in the tools are puzzling and should be fixed.

• The library has a number of issues too, but the fix won’t have user-visible effect (i.e. no
incompatibilities in the API).

• API documentation is incomplete, especially about “parameters”, internals and portability
issues.

2 Repositories and Releases

This project is hosted on the Open Hardware repository at the following link:

http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw

Here a list of resources that you can find on the project page.

Document2 contains the .pdf documentation for every official release.

File3 contains the .tar.gz file for every official release including the .git tree.

Repository4

contains the git repository of the project.

1 http://www.ohwr.org/projects/fmc-adc-100m14b4cha
2 http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw/documents
3 http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw/files
4 git://ohwr.org/fmc-projects/fmc-adc-100m14b4cha/fmc-adc-100m14b4cha-sw.git

http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw
http://www.ohwr.org/projects/fmc-adc-100m14b4cha
http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw/documents
http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw/files
git://ohwr.org/fmc-projects/fmc-adc-100m14b4cha/fmc-adc-100m14b4cha-sw.git

Chapter 3: Driver Features 2

2.1 Use of Names in the Package

Within the code base you may find several different names to refer to the same card. Before you
get confused we’d better explain the reasoning.

fmc-adc, fmcadc
This is the most generic name, and the one that was used everywhere during devel-
opment up to mid-June 2013. Unfortunately, we foresee several ADC cards can be
used in the same computer, so the name was abandoned in favor of more specific
names. The library header, however, is still called fmcadc-lib.h because the same
API will be used for all such cards developed by our group.

fmc-adc-100m14b4cha
This is the name of the ohwr.org project. It is the most specific name related to
this project, but we use it rarely because it is cumbersome to type. Sometimes it is
too long as well.

fmc-adc-100m14b
The name of the kernel module. We think fmc- is important to keep because the
driver fits in the FMC driver subsystem (which is included in the official kernel since
version 3.11).

adc-100m14b
The device name and the name of the default gateware file. The choice is dictated
by the need for ZIO names to be 12 characters at most. We think the fmc part
is irrelevant in this context, while keeping some feature details in case other ADC
devices will coexist in the same host computer.

fa_, zfad_, zfat_ (in the code)
Prefixes for functions and data, explained later. In the source code there is no need
for symbols to be unique, and the role of prefixes is only so the reader to tell external
names (like printk or dma_ops) from names that are defined within the project.

2.2 Names in the Repository

In the repository, the official releases are tagged with a date-based format fmc-adc-sw-#yyyy-
#mm where #yyyy is the release year and #mm is the release month (e.g fmc-adc-sw-2014-04)

Within ohwr.org, we got the habit to include the package name in the tag name: before we
started using git submodules, we used to tag several packages when a release was made, so we
needed to tag with the package name. For this package we use submodules so we chose to tag
with the “simple” name.

Note: If you got the code from the repository (as opposed to a named tar.gz) it may happen
that you are building code from a later commit than what the manual claims to document.
It is a fact of life that developers forget to re-read and fix documentation while updating the
code. If work from the repository please use “git describe HEAD” and the appropriate git log
command. We strongly suggest our user base to stick to official releases, though.

3 Driver Features

This driver is based on the ZIO framework and the fmc-bus. It supports initial setup of the
board; it allows users to manually configure the board, to start and stop acquisitions, to force
trigger, to read acquisition time-stamps and to read acquired samples.

Chapter 4: Installation 3

4 Installation

This driver depends on two other drivers, as well as the Linux kernel. Also, it must talk to
a specific FPGA binary file running in the carrier card (currently only the SPEC carrier is
supported).

4.1 Gateware Dependencies

Please, refer to the ohwr wiki page5 of the project to get the list of supported gateware for a
specific release of the driver (and download them).

4.2 Gateware Installation

To install the FPGA image in the target system, you need to place the .bin file within
‘/lib/firmware/’, where the system can find it.
By default, the driver looks for fmc/adc-100m14b.bin, so the full pathname is
‘/lib/firmware/fmc/adc-100m14b.bin’. You can find the copy of the last tested binary
within the driver repository. Anyway, you can use a different name for your gateware file and
you can load it by specifying the module parameter file=.

4.3 Software Dependencies

The kernel versions used during development are 3.2 and 3.6. Everything used here is known to
at least compile with version 2.6.32,
The driver is base on the ZIO framework available on the Open Hardware Repository6. The
version being used during development is branch v1.0-fixes, i.e. official release 1.0 with a few
corrections and small changes. The exact commit being used is also used as a git submodule of
this package, so it is automatically built.
The driver is also based on the fmc-bus available on the Open Hardware Repository7. This bus
manages FMC carriers and mezzanines, identification and so on.
Both packages are currently checked out as git submodules of this package, and each of them is
retrieved at the right version to be compatible with this driver. This means you may just ignore
software dependencies and everything should work.
In February 2014 we also added spec-sw as a submodule, and later svec-sw too. While the carrier
driver (i.e. the device object in a Linux bus) should not be needed to build the mezzanine driver
(the driver in the bus), we think it’s easier for our users. Also, we need the header because
DMA operations are carrier-specific. The svec-sw submodule is not build by default: while we
need to include its headers, it refers to some absolute pathnames that are internal to us, so it
won’t build for our external users.

4.4 Software Installation

To install this software package, you need to tell it where your kernel sources live, so the package
can pick the right header files. You need to set only one environment variable:

LINUX

The top-level directory of the Linux kernel you are compiling against. If not set,
the default may work if you compile in the same host where you expect to run the
driver.

5 http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw/wiki/Releases
6 http://www.ohwr.org/projects/zio
7 http://www.ohwr.org/projects/fmc-bus

http://www.ohwr.org/projects/fmc-adc-100m14b4cha-sw/wiki/Releases
http://www.ohwr.org/projects/zio
http://www.ohwr.org/projects/fmc-bus

Chapter 4: Installation 4

Additionally, to enable verbose debug messages, you can set CONFIG_FMC_ADC_DEBUG=y either
in your environment or on the command line of make. Such messages are rarely useful for final
users, unless they need to report a bug or other strange behaviour of the package.

Most likely, this is all you need to set. After this, you can run:

make
sudo make install LINUX=$LINUX

In addition to the normal installation procedure for fmc-adc-100m14b.ko you’ll see the following
message:

WARNING: Consider "make prereq_install"

The prerequisite packages are zio and fmc-bus; unless you already installed your own preferred
version, you are expected to install the version this packages suggests. This step can be per-
formed by:

make
sudo make prereq_install LINUX=$LINUX

The step is not performed by default to avoid overwriting some other versions of the drivers.
After make prereq_install, the warning message won’t be repeated any more if you change
this driver and make install again.

In order to compile this package against a specific version of one of the related packages, you
can use one or more of the following environment variables (again, this is mostly for developers):

ZIO

FMC_BUS

SPEC_SW The top-level directory of the repository checkouts for the pacakges. If unset, the
top-level Makefile refers to the submodules of this package.

4.5 Module Parameters

The driver accepts a few load-time parameters for configuration. You can pass them to insmod
directly, or write them in ‘/etc/modules.conf’ or the proper file in ‘/etc/modutils/’ .

The following parameters are used:

file=/path/to/binary.bin
The binary file to use to reprogram the FPGA. The default value for this parameter
is fmc/adc-100m14b.bin as seen in Section 4.2 [Gateware Installation], page 3. The
name is a relative pathname from ‘/lib/firmware’, and it will be used for each and
every card.

enable_test_data=1
This is for testing purpose. This option enables the testing data, so the ADC doesn’t
store samples, but fills memory with sequential numbers. The 64 bit data vector is
filled with sequential values from a free-running 25 bit counter: channel 0 sweeps
the full range, channel 1 goes from 0 to 511, other channel always report 0. Trigger
detection is unaffected by use of test data.

busid=NUMBER[,NUMBER...]
Restrict loading the driver to only a few mezzanine cards. If you have several
SPEC cards, most likely not all of them host an ADC card; by specifying the list
of bus identifiers you restrict the module to only drive those cards. This option will
remain, but is going to be mostly obsoleted by use of eeprom-based identification of
the cards.

Chapter 6: Device Configuration 5

5 About Source Code

5.1 Source Code Organization

The source code for the ADC driver and tools is split in three directories:

• ‘kernel/’: this directory contains all source files to build the driver module. Each file
represents a feature of the complete driver.

• ‘lib/’: this directory contains all source files to build the users pace library.

• ‘tools/’: this directory includes standalone tools that access the ADC driver directly.
Their name begins with ‘fau-’ which means Fmc Adc User. There is also a generic tool to
generate pulses on the parallel port, so it has a different name pattern.

• ‘libtools/’: this directory contains tools which use the fmcadc library. Their name begins
with ‘fald-’, which means Fmc Adc Library Dependent.

5.2 Source Code Conventions

This is a random list of conventions used in this package

• All the internal symbols used in the whole driver begin with the prefix fa_. The prefix
mean: Fmc Adc.

• All internal symbols in the zio driver begin with zfad_. The prefix mean: Zio Fmc Adc
Driver.

• All internal symbols in the zio trigger begin with zfat_. The prefix mean: Zio Fmc Adc
Trigger.

6 Device Configuration

The driver is designed as a ZIO driver. ZIO is a framework for input/output hosted on
http://www.ohwr.org/projects/zio.

ZIO devices are organized as csets (channel sets), and each of them includes channels. This
device offers one cset and four channels. However, the device can only stores interleaved data
for all four channels.

The current approach to this, implemented by one commit in thr v1.0-fixes branch of ZIO,
is defining 5 channels: channels 0 to 3 are the actual input connectors, and their software
counterpart is used to configure the channels; the last channel is called i, and is the interleave
channel where data is retrieved.

6.1 The Overall Device

As said, the device has 1 cset with 4+1 channels. Channels from 0 to 3 represent che physical
channels 1 to 4. The 5th channel chani represent a virtual channel created automatically by the
ZIO framework; this channel represent the interleave acquisition on the cset.

http://www.ohwr.org/projects/zio

Chapter 6: Device Configuration 6

The ADC registers can be accessed in the proper sysfs directory. For a card in slot 0 of bus 2
(like shown above), the directory is /sys/bus/zio/devices/adc-100m14b-0200.
The overall device (adc-100m14b) doesn’t offer configuration items besides its own temperature
(read-only) because configuration is specific of the cset and the trigger, or the individual channel.
This is the content of the device-wide sysfs directory: it only includes standard attributes, the
temperature and the cset subdirectory:

ls -F /sys/bus/zio/devices/adc-100m14b-0200/

cset0/ devtype enable power/ temperature

devname driver name subsystem uevent

The temperature is reported as milli-degrees:
cat /sys/bus/zio/devices/adc-100m14b-0200/temperature

51438

6.2 The Channel Set

The ADC has 1 Channel Set named ‘cset0’. Its attributes are used to control the ADC state
machine, the channel parameters and so on.
This is the complete list of files in the respective sysfs directory.

ls -F /sys/bus/zio/devices/adc-100m14b-0200/cset0/

ch0-50ohm-term ch3-50ohm-term devtype tstamp-acq-end-b

ch0-offset ch3-offset enable tstamp-acq-end-s

ch0-saturation ch3-saturation fsm-auto-start tstamp-acq-end-t

ch0-vref ch3-vref fsm-command tstamp-acq-stp-b

ch1-50ohm-term chan0/ fsm-state tstamp-acq-stp-s

ch1-offset chan1/ name tstamp-acq-stp-t

ch1-saturation chan2/ power/ tstamp-acq-str-b

ch1-vref chan3/ resolution-bits tstamp-acq-str-s

ch2-50ohm-term chani/ rst-ch-offset tstamp-acq-str-t

ch2-offset current_buffer sample-decimation tstamp-base-s

ch2-saturation current_trigger sample-frequency tstamp-base-t

ch2-vref devname trigger/ uevent

Some attributes are channel-specific, and one may thing they should live at channel-level. Un-
fortunately, ZIO currently lacks the mechanisms to convey channel attributes in the meta-data
associated with an interleaved acquisition (where several channels coexist), and for this reason
we chose to put them all at cset level. This may change in future releases, but the library
implementation will follow, so there will be no effect on API users.

Chapter 6: Device Configuration 7

The description of attributes that follows is mainly useful for the shell user, to diagnose the
system and hack around with parameters.

6.2.1 Channel-specific Cset Attributes

The cset includes three attributes for each channel, as follows:

chN-50ohm-term
The read-write attribute accepts values 0 or 1. By writing 1, you turn on the
termination resistor. Default is 0.

chN-offset
The user offset is an integer value in the range [-5000,5000], and it represents mil-
livolts. The offset represents the center-scale of conversion for the input channel.
Internally, a DAC is used to generate the requested voltage, which is then subtracted
from the input signal. DAC values are corrected according to the calibration val-
ues retrieved from the FMC EEPROM. For this reason, the offset may saturate at
values less than +/- 5V.

chN-vref

The “voltage reference” used for conversion. This attribute may be renamed to
“range” in the future (again, with no effect on API users). Changing the range
does not reset the user offset, which is automatically adjusted according to the new
calibration values. The attribute accepts three values: 35 represents the 100mV
range (-50mV to +50mV); 17 represents 1V range; 69 represents 10V range (-5V to
+5V); 0 detaches the input connector from the ADC. The numbers used here derive
from hardware values, and the attributes refuses any other value.

cnN-saturation
The user saturation level in the range [0, 32767]. Users can use this value to configure
their own saturation level. The hardware applies this value symmetrically on the
negative side. By default is setted at the maximum value.

6.2.2 Generic Cset Attributes

This section lists the attributes that are defined by this driver; ZIO-wide attributes
(current_buffer, enable and so on) are not described.

fsm-auto-start
This attribute can be set to 1 or 0. It is 0 by default. If set to 1, the acquisition
state-machine is automatically restarted after the previous run is complete. Thus,
for example, a card configured for external trigger, after the first acquisition will
continue aquiring and storing blocks to the ZIO buffer every time a new trigger
event is detected. Applications can read such blocks from the char device.

fsm-command
Write-only: start (1) or stop (2) the state machine. The values used reflects the
hardware registers. Stopping the state machine aborts any ongoing acquisition.
Starting the state machine is required in order to run an acquisition (the library
manages this internally). The green LED ACQ on the front panel reflect the fact
that the state machine has started. Restarting a running state machine is equivalent
to first stopping it.

fsm-state
Read-only current state of the FSM. Useful for diagnostics in strange situation.
Please refer to the firmware manual (or to source code) about the various states.

Chapter 6: Device Configuration 8

resolution-bits
This read-only attribute returns 14, the number of valid bits in the ADC data
stream.

rst-ch-offset
This write-only attributes zeroes all offset DACs when written, independently of
the value being written. The driver applies the current calibration values, instead
of writing 0 directly to the hardware.

sample-decimation
The ADC always acquires at 100MSamples/s and this value cannot be changed (it
actually can, but it is not currently supported nor even tested). If you need less
samples you can tell the card to decimate (or under-sample) the data stream. The
attribute accepts an integer value, 1 to 65536; it means to pick one sample every
that many. Thus, but writing 100 you get a 1Ms data stream, nad by writing 2 you
get a 50Ms data stream.

sample-frequency
This read-only attributes returns the measured sampling frequency

6.2.3 Timestamp Cset Attributes

The ADC mark with a timestamp all these events: state machine start, state machine stop and
acquisition end. The device split each timestamp in 3 attributes named: second (s), ticks (t)
and bins (b).
Seconds represents (by default) the number of second since the epoch; ticks is the number of
clocks at 125Mhz, the value is between 0 and 125000000 and it increments seconds when it
overflow. At the moment, the bins register is unused.
For example, to read the entire timestamp of the state machine start event you should do:

cat /sys/bus/zio/devices/adc-100m14b-0200/cset0/tstamp-acq-str-s

cat /sys/bus/zio/devices/adc-100m14b-0200/cset0/tstamp-acq-str-t

cat /sys/bus/zio/devices/adc-100m14b-0200/cset0/tstamp-acq-str-b

The driver export 4 time stamps:

tstamp-acq-str-{s|t|b}
this is the time stamp of the last acquisition start command execution

tstamp-acq-end-{s|t|b}
it is the time of last sample acquired

tstamp-acq-stop-{s|t|b}
this is the time stamp of the last acquisition stop command execution

tstamp-trg-lst-{s|t|b}
this is the time stamp of the last trigger fire. Please bear in mind that in multi-shot
acquisition you have several trigger fire, so this time stamp refers only to the last
one. If you need the time stamp for each trigger fire you have to get it from the
zio control of the associated acquisition block.

By default these time stamps represent (more or less) the time since the epoch. The user
can change this and configure a different timing base. The attributes tstamp-base-s and
tstamp-base-t are ment for this purpose.

6.3 The Channels

The ADC has 4 input channels. Each channel features one attribute, which reports the last
acquired sample: current-value.

Chapter 7: The Trigger 9

ls -F /sys/bus/zio/devices/adc-100m14b-0200/cset0/chan0/

address buffer/ current-value devtype name uevent

alarms current-control devname enable power/

the current value is a 16 bit number, resulting from the 14 bit ADC value and calibration
correction. The value is reported as unsigned, even if it actually represents a signed 16-bit
integer. (This because ZIO manages 32-bit attributes and the value shown comes directly from
the hardware).

grep . chan*/current-value

chan0/current-value:1588

chan1/current-value:65436

chan2/current-value:384

chan3/current-value:644

Other attributes in the directory are defined by the kernel or by ZIO.

7 The Trigger

In ZIO, the trigger is a separate software module, that can be replaced at run time. This driver
includes its own ZIO trigger type, that is selected by default when the driver is initialized. You
can change trigger type (for example use the timer ZIO trigger) but this is not the typical use
case for this board.
The name of the ADC trigger is adc-100m14b. Like all other ZIO objects, each instance of the
trigger has a sysfs directory with its own attributes:
The ADC has its own zio trigger type and it can not work with any other ZIO’s trigger. The
ADC trigger is called fmc-adc-trg. We advise you against replacing the trigger with another
one. The sysfs directory of this trigger is the following:

ls -fF /sys/bus/zio/devices/adc-100m14b-0200/cset0/trigger/

delay int-channel polarity sw-trg-enable tstamp-trg-lst-t

devtype int-threshold post-samples sw-trg-fire uevent

enable name power/ tstamp-trg-lst-b

external nshots pre-samples tstamp-trg-lst-s

The trigger supports three operating modes: the external trigger is driven by a specific LEMO
connector on the front panel of the card. The internal trigger activates on data threshold in
one of the four input channels – either positive-going or negative-going. The software trigger is
activated by simply writing to a register.
This is the list of attributes (excluding kernel-generic and ZIO-generic ones):

delay

The delay attribute tells how many samples to delay actual acquisition since the
trigger fired. Being sample-based, the resolution is 10ns. This applies to all trigger
operating modes. By default delay is 0.

enable

This is a standard zio attribute, and the code uses it to enable or disable the hard-
ware trigger (i.e. internal and external). By default the trigger is enabled.

external

The attribute is used to select the internal trigger (0) or the external trigger (1),
within the realm of hardware modes.

int-channel
int-threshold

If the internal trigger is selected, these attributes choose the channel being monitored
(range is 0..3) and the value of the data thresold (as a signed 16-bit value).

Chapter 8: The Buffer 10

nshots

Number of trigger shots. The state machine acquires all trigger events to internal on-
board memory, and performs DMA only at the end. In single-shot, the acquisition
can be as long ad 32Msamples (on-board memory is 256MB), but in multi-shot
acquisition is first done to in-FPGA memory, and thus each shot can only acquire
2048 samples.

polarity

Polarity for the data-thresold used in the internal trigger. 0 represents a positive-
going signal (default), 1 represents a negative edge/slope.

post-samples
pre-samples

Number of samples to acquire. The pre-samples are acquired before the actual
trigger event (plus its optional delay). The post samples start from the trigger-
sample itself. The total number of samples acquired corresponds to the sum of the
two numbers. For multi-shot acquisition, each shot acquires that many sample, but
pre + post must be at most 2048.

sw-trg-enable
sw-trg-fire

To use the software trigger, you must first enable it (writing 1) to sw-trg-enable.
When enabled, by writing any values to sw-trg-file you can force a trigger event.
This is expected to be used only for diagnostic reasons.

tstamp-trg-lst-b
tstamp-trg-lst-s
tstamp-trg-lst-t

To be verified and documented.

8 The Buffer

In ZIO, buffers are separate objects. The framework offers two buffer types: kmalloc and vmalloc.
The former uses the kmalloc function to allocate each block, the latter uses vmalloc to allocate
the whole data area. While the kmalloc buffer is linked with the core ZIO kernel module, vmalloc
is a separate module. The driver currently prefers kmalloc, but even when it preferred vmalloc
(up to mid June 2013), if the respective module wad not loaded, ZIO would instantiate kmalloc.

You can change the buffer type, while not acquiring, by writing its name to the proper attribute.
For example:

echo vmalloc > /sys/bus/zio/devices/adc-100m14b-0200/cset0/current_buffer

The disadvantage of kmalloc is that each block is limited in size. usually 128kB (but current
kernels allows up to 4MB blocks). The bigger the block the more likely allocation fails. If you
make a multi-shot acquisition you need to ensure the buffer can fit enough blocks, and the buffer
size is defined for each buffer instance, i.e. for each channel. In this case we acquire only from
the interleaved channel, so before making a 1000-long multishot acquisition you can do:

DEV=/sys/bus/zio/devices/adc-100m14b-0200

echo 1000 > $DEV/cset0/chani/buffer/max-buffer-len

The vmalloc buffer allows mmap support, so when using vmalloc you can save a copy of your
data (actually, you save it automatically if you use the library calls to allocate and fill the user-
space buffer). However, a vmalloc buffer allocates the whole data space at the beginning, which
may be unsuitable if you have several cards and acquire from one of them at a time.

Chapter 9: Summary of Attributes 11

The vmalloc buffer type starts off with a size of 128kB, but you can change it (while not aquiring),
by writing to the associated attribute of the interleaved channel. For example this sets it to
10MB:

DEV=/sys/bus/zio/devices/adc-100m14b-0200

echo 10000 > $DEV/cset0/chani/buffer/max-buffer-kb

9 Summary of Attributes

The following table lists all attributes related to this driver. All values are 32-bit that ZIO
framework can handle only 32bit unsigned integer.

Ctx Name RW Def. Accepted Comment
Cset enable rw 1 [0;1]
Cset chN-50ohm-term rw 0 [0;1] N = 0..3
Cset chN-offset rw 0 [-5000; 5000] mV, N = 0..3
Cset chN-vref rw 17 [0, 17, 35, 69] N = 0..3
Cset chN-saturation rw 32767 [0;32767]
Cset fsm-auto-start rw 0 [0;1]
Cset fsm-command wo - [1;2] 2 = STOP
Cset fsm-state ro - - hw values
Cset resolution-bits ro 14 -
Cset rst-ch-offset wo - any
Cset sample-decimation rw 1 [1;65535]
Cset sample-frequency ro - -
Cset tstamp-base-s rw - -
Cset tstamp-base-t rw - -

Cset tstamp-acq-str-s ro - -
Cset tstamp-acq-str-t ro - -
Cset tstamp-acq-str-b ro - -
Cset tstamp-acq-stp-s ro - -
Cset tstamp-acq-stp-t ro - -
Cset tstamp-acq-stp-b ro - -
Cset tstamp-acq-end-s ro - -
Cset tstamp-acq-end-t ro - -
Cset tstamp-acq-end-b ro - -
Chan current-value ro - - 16 0..64k, use as signed 16b
Trig delay rw 0 [0;4G]
Trig enable rw 1 [0;1] enable hw trigger
Trig external rw 1 [0;1]
Trig int-channel rw 0 [0;3]
Trig int-threshold rw 0 [0;65535] datum after offset/calib
Trig nshots rw 1 [0;65535]
Trig polarity rw 0 [0;1] 1 = falling
Trig post-samples rw 0 Any max 2k if multishot
Trig pre-samples rw 0 Any max 2k if multishot

Trig sw-trg-enable rw 0 [0;1]
Trig sw-trg-fire wo - Any
Trig tstamp-trg-s ro - -
Trig tstamp-trg-t ro - -

Chapter 10: Reading Data with Char Devices 12

Trig tstamp-trg-b ro - -

10 Reading Data with Char Devices

To read data from user-space, applications should use the ZIO char device interface. ZIO creates
2 char devices for each channel (as documented in ZIO documentation). The ADC acquires only
interleaved samples, so ZIO creates two char device, as shown below:

ls -l /dev/zio/

total 0

crw------- 1 root root 250, 8 Aug 23 22:21 adc-100m14b-0200-0-i-ctrl

crw------- 1 root root 250, 9 Aug 23 22:21 adc-100m14b-0200-0-i-data

The actual pathnames depend on the version of udev you are running. The fmc-adc library tries
both names (the new one shown above, and the older one, without a zio subdirectory). Also,
please note that a still-newer version of udev obeys device permissions, so you’ll have read-only
and write-only device files (in this case they are both read-only).

If more than one board is probed for, you’ll have two or more similar pairs of devices, differing
in the dev id field, i.e. the 0200 shown above. The dev id field is built using the PCI bus and
the devfn octet; the example above refers to slot 0 of bus 2. (Most of the time each PCI-E
physical slot is mapped as a bus, so the slot number is usually zero).

The ADC hardware does not allow to read data from a specific channel; data is only transferred
as an interleaved block of samples. Neither the ZIO core nor the driver split interleaved data
into 4 different buffers, because that task is computationally intensive, and is better left to the
application (which may or may not need to do it). Thus, the driver returns to user-space a block
of interleaved samples.

To read this interleaved block you can read directly the interleaved data char device adc-
100m14b-0200-0-i-data using any program, for example cat or hexdump:

hexdump -n 8 -e ’"" 1/2 "%x\n"’ /dev/zio/adc-100m14b-0200-0-i-data

fffc

e474

8034

8084

The ADC hardware always interleaves all 4 channels, and you cannot acquire a subset of the
channels. The acquired stream, thus, follows this format:

The char-device model of ZIO is documented in the ZIO manual; basically, the ctrl device
returns metadata dna thr data device returns data. Items in there are strictly ordered, so
you can read metadata and then the associated data, or read only data blocks and discard the
associated metadata.

The zio-dump tool, part of the ZIO distribution, turns metadata and data into a meaningful
grep-friendly text stream.

Chapter 11: Tools 13

11 Tools

The driver is distributed with a few tools. Some of them live in the ‘tools/’ subdirectory, and
some other are based on the provided library and live ‘libtools/’ directory.
This chapter describes the former group; the tools’ names use fau- as a prefix, for Fmc Adc
User. For libtools see Chapter 13 [Library-based Tools], page 15.

11.1 Trigger Configuration

The program fau-trg-config configures the FMC ADC trigger. The tool offers command line
parameters to configure every register exported by the driver. The help screen for the program
summarizes the options:

./tools/fau-trg-config --help

fau-trg-config [OPTIONS] <DEVICE>

<DEVICE>: ZIO name of the device to use

--pre|-p <value>: number of pre samples

--post|-P <value>: number of pre samples

--nshots|-n <value>: number of trigger shots

--delay|-d <value>: set the ticks delay of the trigger

--threshold|-t <value>: set internal trigger threshold

--channel|-c <value>: select the internal channel as trigger

--external: set to external trigger. The default is the internal trigger.

--negative-edge: set internal trigger polarity to negative edge. The default

is positive edge.

--enable-sw-trg: enable the software trigger. By default is disabled.

--disable-hw-trg: disable the hardware trigger. By default is enabled

--force: force all attribute to the program default

--help|-h: show this help

NOTE: The software trigger works only if also hardware trigger is enabled

The tool gets the configuration values from the user and it writes them to the corresponding
sysfs attributes for the specified device. or example, if you want to configure the board for
the external trigger and 3 shots of 10 pre-samples and 100 post-samples, this is the associated
command line:

./tools/fau-trg-config --external --pre 10 --post 100 --re-enable 2 \

adc-100m14b-0200

As shown, the nshot parameter is passed as a number of re-enables, because the trigger is
initially automatically enabled. This may change in the future, for better naming consistency
with hardware documentation and across tools.

11.2 Gain Configuration

The program tools/fau-config-if is a simple graphic tool that allow to select offset and
range for the four channels, activate termination and see the current value of each channel,
every 500ms.
The program open one window for each detected card, and configures it by writing to sysfs.
Such writes are also reported to stdout (in the terminal where you invoked the program), so you
can easily copy the pathnames in your shell commands.
Figure 11.1 shows two instances of the tool, running on the same card with device id 0x200
(your window decorations will be different, according to your choice of window manager or
desktop environment). The first one (at the left) is running under Tk-8.5; the second one
shows the graphic appearance of Tk-8.4 (and earlier versions). If you prefer the older one,
run “wish8.4 tools/fau-config-if” instead of “tools/fau-config-if” (or set the previous
version as default Tk interpreter).

Chapter 12: The ADC Library 14

Figure 11.1

11.3 Acquisition Time

The program fau-acq-time retrieves the timestamps associated with the acquisition. This is the
help screen of the program:

./tools/fau-acq-time --help

fau-acq-time [OPTIONS] <DEVICE>

<DEVICE>: ZIO name of the device to use

--last|-l : time between the last trigger and the acquisition end

--full|-f : time between the acquisition start and the acquisition end

--help|-h: show this help

The program can return two different “types” of acquisition time. The value returned by --last
represent the time elapsed between the last trigger event and the acquire-end event; this is the
time spent during the last capture.

The value returned by --full is the time elapsed between the acquisition start event and the
acquisition end event, i.e. the total time spent waiting for all trigger events and the time spent
acquiring all samples.

11.4 Parallel Port Burst

If you have a Parallel Port you can use it to generate bursts of pulses with a software program.
This may be useful to test the external trigger; you can connect the parallel port to the external
trigger of the FMC ADC and generate your trigger events with this program

The program parport-burst, part of this package, generates a burst according to three command
line parameters: the I/O port of the data byte of the parallel port, the repeat count and the
duration of each period. This example makes 1000 pulses of 100 usec each, using the physical
address of my parallel port (if yours is part of the motherboard, the address is 378):

./tools/parport-burst dd00 1000 100

12 The ADC Library

This package includes a library to access the ADC device through C language. The library is
designed as a generic resource, that can be extended to support other devices, when they become
available.

The library, also called API in some contexts, is described by a separate document, because over
time we expect it to live in its own package.

Chapter 13: Library-based Tools 15

13 Library-based Tools

In the directory ‘libtools/’ you can find demo programs that use the official API to interact
with the driver. The programs are meant to provide examples about use of the API. Unfortu-
nately, the library is not yet finalized as we write this, but the tools in the package will remain
in sync while we change the API to reach its final agreed-on implementation.
All library-based tools filenames use fald- as a prefix, for Fmc Adc Library-Dependent.

13.0.1 Simple Acquisition

The most important tool is ‘fald-simple-acq’, which perform and ADC acquisition according
to the specified parameters. The source code is meant to be used as an example by application
authors, but sometimes the need for generality makes the code a slightly more difficult than
expected. Also, a good amount of the program is devoted to command-line parsing, but that’s
unavoidable if we want to support several operating modes.
The program is invoked as “fald-simple-acq <option> [...] <devid>”, where the devid is
the hex identifier for the board (i.e., 200 or 0x200 for bus 2, slot 0).
This table describes the options supported (a few aliases are supported for backward compat-
ibility, so old scripts still work, but such options are not documented); we support both short
and long options:

-b <num>, --before=<num>
-a <num>, --after=<num>

Number of pre-samples and post-samples for each “shot”. If nshots is greater than
1, the total number of samples must be less than or equal to 2048. The total number
of samples is the sum of pre-samples and post-samples.

-n <num>, --nshots=<num>
Number of shots (i.e. number of trigger events to be served). For each shot, a
complete acquisition is run. Each shot fills one ZIO data block, but no block is
available before the card acquired the complete series.

-d <num>, --delay=<num>
Delay from the trigger event to the actual use of the event. The delay is expressed
in number of samples.

-u <num>, --undersample=<num>
Undersample (“decimate”) the acquired data. Only 1 sample every <num> is saved.
The default is 1 (i.e., save all samples).

-t <num>, --threshold=<num>
-c <chan>, --channel=<chan>

Select the “internal” trigger (i.e. data-driven). The channel number is expresses in
the range 0..3; the threshold is in the range -32768..32767. By default the program
selects the external trigger.

--negative-edge
For either the external or internal trigger, use negative edges (by default: positive)
to fire the trigger event.

-B <file>, --binary=<file>
-M <basename>, --multi-binary=<basename>
-N, --dont-read

By default the program prints text data to standard output. When using one of
these options, data is saved in binary format, or not read from the device at all. See
below for a more complete description.

Chapter 13: Library-based Tools 16

The program normally prints some diagnostic information about the acquisition to stderr, and
the data, in a textual encapsulation to stdout.
For example, the following one is a 2-shot, 5-samples acquisition using the external trigger. The
second channel is connected to the same electrical signal as the trigger connector.

spusa.root# ./libtools/fald-simple-acq -n 2 -b 2 -a 3 0x200

Read 20 samples from shot 1/2

-2 -1449 -290 -872 -571

-1 -2178 6325 -1175 -2110

0 -1483 30745 -740 -2253

1 -258 30745 201 -719

2 -738 30745 -861 -2114

Read 20 samples from shot 2/2

-2 -1052 -366 -234 1224

-1 -1596 -309 -793 1186

0 -2299 6431 -1303 -431

1 -1555 30745 -680 -303

2 -77 30745 261 979

By redirecting stdout to a file, you can easily plot the acquisition using gnuplot or other tools.
In the example shown, we have two pre-samples (-2 and -1) and three post-samples (0, 1, 2).
By using -B, you tell the program to save both metadata and data to a binary file. Such a
binary file can then be used offline, using tools like zio-dump (part of the ZIO distribution).

spusa.root# ./libtools/fald-simple-acq -n 2 -b 2 -a 3 -B /tmp/acq 0x200

Read 20 samples from shot 1/2

Read 20 samples from shot 2/2

spusa.root# ./zio/tools/zio-dump -c /tmp/acq

Ctrl: version 1.0, trigger adc-100m14b, dev adc-100m14b-0200, cset 0, chan 4

Ctrl: alarms 0x00 0x00

Ctrl: seq 5, n 20, size 2, bits 14, flags 01000011 (little-endian)

Ctrl: stamp 1372281727.026491000 (0)

Data: 81 78 f4 0e 16 fb ef fe 81 78 19 78 22 fc a9 fc

Data: 81 78 19 78 33 01 47 03 81 78 19 78 4a fe 54 fe

Data: 81 78 19 78 0b fb 7a fe

Ctrl: version 1.0, trigger adc-100m14b, dev adc-100m14b-0200, cset 0, chan 4

Ctrl: alarms 0x00 0x00

Ctrl: seq 6, n 20, size 2, bits 14, flags 01000011 (little-endian)

Ctrl: stamp 1372281727.026497354 (0)

Data: 39 fa 61 fe d8 fc fb fe 5d f8 00 20 ac fa 46 f8

Data: 41 fb 19 78 64 fd f8 f8 54 ff 19 78 c8 ff 27 fe

Data: 84 fd 19 78 e6 fb 89 f7

Zio dump can also show attributes, but it currently is unable to demultiplex an interleaved
channel.
By using the multi-binary option, you can tell the program to save one file for each metadata
and one file for each data. For example, lets’ use the internal trigger on channel 2 and see the
metadata for the first block:

spusa.root# ./libtools/fald-simple-acq -n 2 -b 2 -a 3 -c 1 -t 10000 \

-M /tmp/multi 0x200

Read 20 samples from shot 1/2

Read 20 samples from shot 2/2

spusa.root# ls -l /tmp/multi*

-rw-r--r-- 1 root root 512 Jun 26 23:26 /tmp/multi.000.ctrl

-rw-r--r-- 1 root root 40 Jun 26 23:26 /tmp/multi.000.data

-rw-r--r-- 1 root root 512 Jun 26 23:26 /tmp/multi.001.ctrl

-rw-r--r-- 1 root root 40 Jun 26 23:26 /tmp/multi.001.data

spusa.root# ./adc/zio/tools/zio-dump -c -a /tmp/multi.000.ctrl

Ctrl: version 1.0, trigger adc-100m14b, dev adc-100m14b-0200, cset 0, chan 4

Ctrl: alarms 0x00 0x00

Ctrl: seq 7, n 20, size 2, bits 14, flags 01000011 (little-endian)

Ctrl: stamp 1372281961.064656080 (0)

Ctrl: device-std-mask: 0x0001

Chapter 14: Troubleshooting 17

Ctrl: device-std-0 0x0000000e 14

Ctrl: device-ext-mask: 0x1fff

Ctrl: device-ext-0 0x00000001 1

[...]

Ctrl: trigger-std-mask: 0x0007

Ctrl: trigger-std-0 0x00000002 2

Ctrl: trigger-std-1 0x00000003 3

Ctrl: trigger-std-2 0x00000002 2

Ctrl: trigger-ext-mask: 0x001f

Ctrl: trigger-ext-0 0x00000000 0

Ctrl: trigger-ext-1 0x00000000 0

Ctrl: trigger-ext-2 0x00000001 1

Ctrl: trigger-ext-3 0x00002710 10000

Ctrl: trigger-ext-4 0x00000000 0

As shown, all acquisition parameters are part of the metadata (“control”) file, as either standard
or extended attributes. The mapping of standard attributes is defined at ZIO level (trigger
attributes 1, 2, 3 are nshots, post-samples and pre-samples, resp.); extended attributes are
defined by each device or trigger type (here, trigger attribute 3 is the threshold). The mapping
of standard attributes is defined in the ZIO headers, the mapping of extended attributes is
defined by each device or trigger.

Finally, by passing -N, you tell the program to not read data at all from the char devices. This
allows reading directly with zio-dump or other programs, while still using fald-simple-acq to
configure the acquisition.

13.0.2 Test Program

The program called fald-test is a very simple test program, that can allocate several buffers
and fill them all, or use a single buffer over and over for multi-shot acquisition.

It is not documented for lack of time, but the source is meant to be readable. We used it and
strace to check that stuff happens properly as documented. Configuration is done mainly by
setting environment variables.

13.0.3 Retrieve Configuration

To retrieve the current configuration from a device you can use the demo program
‘fald-simple-get-conf’:

spusa.root# ./adc/libtools/fald-simple-get-conf 0x200

Open ADC fmcadc_100MS_4ch_14bit dev_id 0x0200 ...

Get Trigger Configuration ...

source: internal

channel: 1

threshold: 10000

polarity: 0

delay: 0

Get Acquisition Configuration ...

n-shots: 2

post-sample: 3

pre-sample: 2

decimation: 1

frequency: 100000000Hz

n-bits: 14

14 Troubleshooting

This chapter lists a few errors that may happen and how to deal with them.

Chapter 14: Troubleshooting 18

14.1 ZIO Doesn’t Compile

Compilation of ZIO ma fail with error like:
zio-ad788x.c:180: error: implicit declaration of function "spi_async_locked"

This happens because the function wasn’t there in your older kernel version, and your system
is configured to enable CONFIG_SPI.
To fix, please just remove the zio-ad788x line from drivers/Makefile.

14.2 make modules install misbehaves

The command sudo make modules install may place the modules in the wrong directory or fail
with an error like:

make: *** /lib/modules/2.6.37+/build: No such file or directory.

This happens when you compiled by setting LINUX= and your sudo is not propagating the
environment to its child processes. In this case, you should run this command instead

sudo make modules_install LINUX=$LINUX

	Introduction
	Bugs and Missing Features
	Repositories and Releases
	Use of Names in the Package
	Names in the Repository

	Driver Features
	Installation
	Gateware Dependencies
	Gateware Installation
	Software Dependencies
	Software Installation
	Module Parameters

	About Source Code
	Source Code Organization
	Source Code Conventions

	Device Configuration
	The Overall Device
	The Channel Set
	Channel-specific Cset Attributes
	Generic Cset Attributes
	Timestamp Cset Attributes

	The Channels

	The Trigger
	The Buffer
	Summary of Attributes
	Reading Data with Char Devices
	Tools
	Trigger Configuration
	Gain Configuration
	Acquisition Time
	Parallel Port Burst

	The ADC Library
	Library-based Tools
	Simple Acquisition
	Test Program
	Retrieve Configuration
	Troubleshooting
	ZIO Doesn't Compile
	make modules_install misbehaves

