FMC ADC Programmer’s Interface

September 2014 (fmc-adc-100m-sw-2014-05-44-g91e47c2-dirty)
A generic API for ADC devices

CERN BE-CO-HT / Alessandro Rubini and others

Table of Contents

Introduction
1 Bugs and Missing Features
2 General Ideas and Rationale..................................
2.1 BUFFOTS . .. oo
2.2 CONBEUIALION .« o+ et
2.3 TMPLEmentation SEALUS neee e e e e
3 Error Reporting
4 Initialization and Cleanup
5 Opening and closing..................
6 Time Stamps.........
7 Configuration
8 Acquisition.........
9 Buffers.............
10 Internals.......
11 Incompatibilities...............

Chapter 2: General Ideas and Rationale 1

Introduction

This is the documentation for the programmer’s interface (API) that is expected to accompany
most or all of the ADC cards being developed and used by the Controls grout at CERN.

This design is the outcome of email discussion between Michel Arruat, David Cobas, Federico
Vaga and Alessandro Rubini in March 2013. Ideas have later been refined during real use.
Alessandro wrote this document.

1 Bugs and Missing Features

To set the record straight, we’d better list the known issues right off at the start. We are aware
of the issues, but they are not fixed at this point in time.

e The “parameters” functions are not documented, although they are here to stay.

e The library should automatically choose the buffering options: for zio, buffer type and size
adjustment. This is not implemented and users must do that by themselves (see the driver
manual about how to do it).

e Internals are not documented, while we think some guidance in understanding the code
is useful, in case users need to trace unexpected behaviours that may be library bugs or
application bugs. Also, verbose mode exists but it not documented.

e Verbose mode is not verbose enough: sysfs accesses are only reported in case of error, while
a complete trace of them is often useful to understand what is going on. Similarly, “log to
file” instead of “verbose to stderr” should be added as an option.

e Internally, a number of functions must be renamed, and a better split between api-generic,
zio-generic and driver-specific code must be put in place.

e Some code parts, especially configuration, should be restructured to use data tables instead
of open-coded conditionals. This is important for maintainance and easy addition of new
boards.

e We need to add reset_conf and related functions, that are currently missing. Also, direct
access to configuration structures inside the device structure should be provided. The
current API will remain, though, we plan to just add easier use cases.

2 General Ideas and Rationale

The API is meant to be as generic, so the same code can be run mostly unchanged with a
variety of boards and driver types. This is why the name used for headers and libraries is simply
fmc-ade, without a card name in there — the fmc prefix reflects the current situation where all
foreseen cards in the group are in the FMC form factor,

The user, however, is expected to select the card being worked on, by means of a name and a
device ID, which generally reflects the geographic placement of the card.

2.1 Buffers

Each acquisition run is relying on a buffer. The buffer includes both data and metadata. The
layout of data is depending on the card and its configuration; the metadata part depends on
the type of driver currently running for the card. For example, if the driver is based on the
710 framework, the metadata part of the buffer refers to a ZIO control block. The idea is that
all information is available to the user, who can use it at will or ignore it and just use generic
interfaces.

Chapter 4: Initialization and Cleanup 2

Buffers are generally allocated by the library, but the application can provide its own allocator
if it really wants to. The reason for using library-driven allocation is that the library knows
better. If, for example, the driver offers mmap support, the library can choose to map acquired
data instead of calling malloc. However, for the rare case where the application knows better, it
can override this. Also, the application should tell the number of buffers and expected data size
at the beginning, so the library can properly configure the underlying driver, if this is needed.

For ZI0 drivers, you can use two buffer types: kmalloc and vmalloc. Please check section Buffers
in the fmc-adc-driver manual (discussion will be moved here as we finalize automatic setting of
buffer features).

2.2 Configuration

Configuration is performed by passing parameters as 32-bit numbers. The library defines arrays
of such parameters, one for each aspect of the overall problem (triggers, data, and so on). Each
item in the array has a symbolic name, and each array is associated with a bitmask that specifies
which parameters have been set. The choice of arrays is driven by the need for generic structures
that can be used unchanged with different hardware cards.

While there is a little overhead in parsing the generic structures, configuration is not something
that happens in hot paths, and we see no problems in that. Also, please note that setting the
configuration and applying it are different steps, and the configuration data structures can be
prepared and saved for later use.

2.3 Implementation Status

Currently the library is only implemented for the “FmcAdc100M14b4cha’” card, driven by a ZIO
driver. The API however will not change as we add new cards and drivers; we’ll likely need a
few new configuration items to match the specifics of the new cards, but this will work as long
as you link the newer version of the library.

3 Error Reporting

Each library function returns values according to standard libc conventions: -1 or NULL (for
functions returning int or pointers, resp.) is an error indication. When error happens, the
errno variable is set appropriately.

errno values can be standard Posix items like EINVAL, or library-specific values, FMCADC_ENOSET
(“Cannot set requested item”). All library-specific error values have a value greater than 1024,
to prevent collision with standard values. To convert such values to a string please use the
function:

char *fmcadc_strerror(int error);

The function returns static storage, so you can keep around the pointer it returns, if needed.
Similarly, there is no concurrency between getting the string and using it, not even in multi-
threaded environments (errno itself is already protected, in this respect).

4 Initialization and Cleanup

The library may keep internal information, so the application should call its initialization func-
tion. After use, it should call the exit function to release internal data, but it is not mandatory
to do that at program termination, because the operating system releases anything in any case
— the library doesn’t leave unexpected files in persistent storage.

Chapter 5: Opening and closing 3

int fmcadc_init(void);
void fmcadc_exit(void);

The functions don’t do anything at this point, but they may be implemented in later releases.
For example, the library may scan the system and cache the list of peripheral cards found, to
make later open calls faster.

5 Opening and closing

Each device must be opened before use, and it should be closed after use. It is not mandatory
to close if the process is going to terminate, as the library has no persistent storage to clean up
— but there may be persistent buffer storage allocated, and fmcadc_close may release it in future
versions.

fmcadc_dev *fmcadc_open(char *name, unsigned int dev_id,
unsigned long totalsamples,
unsigned int nbuffer,
unsigned long flags)
struct fmcadc_dev *fmcadc_open_by_lun(char *name, int lun,
unsigned long totalsamples,
unsigned int nbuffer,
unsigned long flags);
extern int fmcadc_close(struct fmcadc_dev *dev);

This is the meaning of the various arguments:

fmcadc_dev
The device is an opaque object for the user. It should be passed around but not be
looked into.

name

Devices are opened by name, and the name for the only supported card at the
moment is “fmc-adc-100m14b4cha”.

dev_id

The device identifier is used to enumerate several cards in the same system. The
number is usually dependent on the geographic placement of the card (bus number,
slot number).

lun

Logical Unit Number. This number comes from a database description of the system
(open_by_lun is not currently implemented).

totalsamples
This is a a hint about how big a buffer the application will use. Managing big
acquisitions (hundreds of megabytes, or gigabytes) requires some pre-allocation of
the data, and sometimes this configuration happens at device level, so it’s good to
have the information at open time. This is a number of samples, i.e. nshots *
(presamples + postsamples), not a number of bytes.

nbuffer

This is a hint about how many buffers are being used at the same time by the
application. For example, a multi-shot acquisition requires all buffers to be available
at the same time. Again, this information may require device-level configuration at
open time.

Chapter 7: Configuration 4

flags

This argument is used to pass user flags. The library currently supports
FMCADC_F_FLUSH (that reads and discards any input samples possibly left over by
a previous acquisition) and FMCADC_F_VERBOSE (that enables diagnostic messages
to stderr).

currently unused, but some driver may need to have some more information, or
flags, at open time.

6 Time Stamps

The timestamp structrure is defined as follows:

struct fmcadc_timestamp {
uint64_t secs;
uint64_t ticks;
uint64_t bins;
}
This is the same structure as used by the ZIO framework, but it is not specific to ZIO — the
choice made there was just the best of breed, agreed upon in a discussion held within the HT
section.

Currently, timestamps are only used in association with buffers: after an acquisition is over and
saved to a buffer, the user can ask for the timestamp of the acquired buffers. See Chapter 9
[Buffers|, page 6

7 Configuration

Configuration is the most intensive part of the library, because there are a number of parameters
that can be set or retrieved.

Unfortunately, for lack of time on my side, it is not properly documented here.

Briefly, configuration is described by a few data structures. Each structure includes a “type”
identifier, some internal fields and an array of configuration values. A bitmask (in the structure
itself) states which configuration values are active. All parameters are 32 bits wide; each struc-
ture includes 64 values. The position of each parameter in the array is fixed, and as boards are
added to this library we may need to add new values for unforeseen requirements. We don’t
expect to change the API, nor replace the meaning of the already-defined array members.

Please check the header file to know the currently-defined parameters.

The library offsers the following functions related to configuration:

void fmcadc_set_conf (struct fmcadc_conf *conf,

unsigned int conf_index, uint32_t val);
int fmcadc_get_conf(struct fmcadc_conf *conf,

unsigned int conf_index,

uint32_t *val);
int fmcadc_reset_conf(struct fmcadc_dev *dev, unsigned int flags,

struct fmcadc_conf *conf);
int fmcadc_apply_config(struct fmcadc_dev *dev, unsigned int flags,
struct fmcadc_conf *conf);
int fmcadc_retrieve_config(struct fmcadc_dev *dev,
struct fmcadc_conf *conf);

The set and get functions access a single configuration element of the configuration structure.
Please remember that there are several configuration structures, but indexes start from 0 for
each of them — future revisions of this library may include a non-ambiguous naming, while still
keeping the current API for compatibility.

Chapter 8: Acquisition 5

The reset function (which is not yet implemented) sets all items in the structure to the advertised
default for the specific device (it can only be called after opening the device). Like the previous
two, it is only concerned with data structures, and it makes no hardware access.

The apply and retrieve functions talk with the device driver, to transfer active items of the
configuration to the hardware. As mnemonic, you can keep in mind that the functions with the
longer config name do more (talk with hardware), while those with the shorter name conf do
less.

8 Acquisition

The library offers three functions related to acquisition:

int fmcadc_acq_start(struct fmcadc_dev *dev, unsigned int flags,
struct timeval *timeout);

int fmcadc_acq_poll(struct fmcadc_dev *dev, unsigned int flags,
struct timeval *timeout);

int fmcadc_acq_stop(struct fmcadc_dev *dev, unsigned int flags);

The start function tells hardware to start acquisition according to the current configuration
(but starting in itself is usually a fast operation, because it doesn’t rewrite configuration to
the hardware, at least with currently supported boards). It can return immediately or wait
for completion, with a timeout. The function supports FMCADC_F_FLUSH, to discard previous
leftover data before activating the acquisition, if any is there.

The poll function waits for acquisition to complete. Again, it can return immediately or wait. A
return value of 0 means acquisition is over. For multi-shot we would like to return the number
of still-missing shots, but this is not yet supported.

The stop function stops an already-begun acquisition. It is not expected to be of frequent use.

According to the low-level implementation, functions waiting for data (i.e. start when passed a
timeout and poll) may fail with FMCADC_EDISABLED if the acquisition is externally disabled by
other entities. ZIO supports that (since Nov 2013) by setting POLLERR when a user disables the
trigger through a sysfs write. Other backends may offer their own notification means.

This is the meaning of the arguments:

dev

The device returned by a previous fmcadc_open call.

flags

Flags to request special actions. 0 always selects the default behavior. Currently,
the start function supports FMCADC_F_FLUSH — this is not supported by the poll
function, because after telling hardware to start 1/O we cannot safely discard “old”
data. Flags can be used for other things: for example, we may soon define a flags to
automatically enable a new acquisition when the previous one is over, for stream-like
applications. (In that case after each successful poll the next call would wait for
another acquisition to be over).

timeout

The timeout is used like the argument for select(2): if NULL, the functions wait
forever, otherwise they specify the maximum allowed waiting time — and passing
zero values asks to not wait at all.

Chapter 9: Buffers 6

9 Buffers

The buffer is a data structure. It includes data and metadata (but the format of metadata
depends on the specific driver in charge of the hardware), as well as other informative fields:

struct fmcadc_buffer {
void *data;
void *metadata;
int samplesize;
int nsamples;
struct fmcadc_dev *dev;
unsigned long flags; /* internal to the library */
void *mapaddr;
unsigned long maplen;
};
The buffer is allocated and released by the library. The rationale is described in Section 2.1
[Buffers Overview|, page 1. the application is not allowed to pass its own buffer. It is possible,
however, for the application to override the allocation for data by passing a pointer to its own

preferred allocator.
The following functions are related to buffers:

struct fmcadc_buffer *fmcadc_request_buffer(struct fmcadc_dev *dev,
int nsamples,
void *(*alloc_fn) (size_t),
unsigned int flags);
int fmcadc_fill_buffer(struct fmcadc_dev *dev,
struct fmcadc_buffer x*buf,
unsigned int flags,
struct timeval *timeout);
struct fmcadc_timestamp *fmcadc_tstamp_buffer (struct fmcadc_buffer *buf,
struct fmcadc_timestamp *ts);
int fmcadc_release_buffer(struct fmcadc_dev *dev,
struct fmcadc_buffer x*buf,
void (*free_fn) (void *));
The request_buffer function allocates an empty buffer and returns it to the user. It returns
NULL on failure. The buffer is empty, and neither the data nor thr metadata can be accessed

until the buffer is filled.

The £i11_buffer function is run after an acquisition, and fills the buffer with the next available
shot. The size of the buffer must be at least equal to the size of the shot; otherwise the result
is undefined. The function may fail with FMCADC_EDISABLED if the acquisition is externally
disabled/aborted by other entities.

tstamp_buffer extracts the acquisition timestamp from the buffer, in a driver-specific way
(most likely looking in the metadata structure). If the caller passes a ts pointer, the timestamp
is copied into that pointer and the same pointer is returned. If ts is NULL, the function returns
a pointer of its own choice, that is only valid until the buffer is released.

The release_buffer function releases any resources associated with the buffer.

This is the meaning of the various arguments, in the order in which they appear:

dev
The device must be the result of an fmcadc_open call (or open_by_lun).

nsamples

The number of samples associated with this buffer (the size of each sample is known
by the device type). This is the total number, so a 4-multiplexed acquisition of 10
samples requires 40 samples here. If the application plans to run several acquisitions
(even of different sizes), it can allocate the buffers beforehand. Thus, the driver can’t
know the nsamples value in advance. The number of samples in the buffer may be
bigger than the number of samples that will actually be acquired later.

Chapter 11: Incompatibilities 7

alloc_fn
The pointer is usually expected to be NULL, as the driver knows how to allocate
the buffer. However, if the pointer is not null, the library will use it to allocate the
data area of the buffer (the buffer structure and the metadata are not allocated with
this function).

flags
Currently unused, available for future special cases.

buf
The buffer pointer, as returned by the allocation function.

timeout
The timeout for filling the buffer is used like the timeout in select(2). If NULL,
there is no timeout, if set, it is used as a maximum waiting time. If allocation times
out, NULL is returned, with ~ETIMEDOUT as errno.

ts
A pointer to timestamp, so the library can copy the timestamp to user-provided
storage.

free_fn

If the data section of the buffer was allocated by a custom allocator, this is the
pointer to associated free function. The two function pointers match the prototypes
of malloc and free.

By accepting a user-defined allocator, we allow customized management of the data area in
the most flexible way. The application may have special needs that are unforeseeable by the
driver. In the simplest case, the application needs to send out or save the data with its own
ancillary information: the custom allocator in this case can return the pointer inside the pre-
built structure. If the driver retrieves data using the read system call, this trick can save a data
copy overall — if the driver would see data through mmap, there is no saving in using the custom
allocator but no additional cost, either.

10 Internals

To be documented in a later version.

11 Incompatibilities

During June 2013 we defined the final API as documented here. However, code written before
June 28th may use the initial conventions, that are no more active. The current API is designed
to be persistent over the years, and work with any ADC card belonging to the same family as
our first board, the “fmc-adc-100m14b4cha” one.

This is the list of incompatibilities. I list the commit, so you can see the actual change in git
history if you are affected.

e Some configuration names changed. Now naming is consistent across all configuration
macros. Change applied in commit 78a2ac0b.

e The data structures have 64 configuration items, not 32. This requires to use long long
for the mask, but users are strongly encouraged to use the helpers conf_set and conf-get.
Change applied in commit aaleael6.

Index 8

e Configuration functions use conf in their name, not attr. Change applied in commit
34¢93097.

e The fmcadc_strerror function takes only the errnum argument, not dev any more. Applied
in commit e83791de.

e Applications are asked to call fmcadc_init and fmcadc_exit (but the latter is optional at
program termination).

e The open function states the number of shots and the total data size, so the library can
prepare for the best allocation strategy. Applied in commit 6f3e4435.

e Buffer functions are different: the buffer is allocated by the library (not by the caller any
more) and there is a new function to fill the buffer. Commit 3e83241e implements the
prototype, but keeps the previous semantic; code and examples have been fixed later.

e A new reset_conf function exists, to force default values on all configuration variables. This
can be used to prevent configuration leakage from the previous acquisition to the next.
Resetting configuration is optional, so you can use a process to configure the card and
another to acquire (I personally set range and gain before I run acquisition programs, for
example).

e There is a new function to poll for acquisition. This is useful since the process may want
to do something else while waiting for the trigger.

Index

fmcadc_acq_poll 5 fmcadc_init 2
fmcadc_acqg_start ool 5 fmcadc_open....... ...l 3
fmcadc_acq_stop ... 5 fmcadc_open_by_lun............... 3
fmcadc_apply_config................ 5 fmcadc_release_buffer........................... 6
fmcadc_closeot 3 fmcadc_request_buffer.......... 6
fmcadc_exXit . ooiiii e 2 fmcadc_reset_conf 4
FMCADC _F_FLUSH. ...ttt 3 fmcadc_retrieve_configL 5
FMCADC_F_VERBOSEt 3 fmcadc_set_conf 4
fmcadc_fill_buffer........... 6 fmcadc_Strerror 2

fmcadc_get_conf oo 4 fmcadc_tstamp_buffer.............o L 6

	Introduction
	Bugs and Missing Features
	General Ideas and Rationale
	Buffers
	Configuration
	Implementation Status

	Error Reporting
	Initialization and Cleanup
	Opening and closing
	Time Stamps
	Configuration
	Acquisition
	Buffers
	Internals
	Incompatibilities
	Index

